

Malware Analysis Report

Wishful Woodchuck

28 July 2021

© Crown Copyright 2021

Version 1.0

Wishful Woodchuck
Non-persistent Windows keylogger

Executive summary

• Wishful Woodchuck logs keystrokes to a file on disk

• Windows API calls are used to hook the keyboard

• The log file is XOR-encoded with a multi-byte key which is embedded in the binary

• This keylogger contains no persistence or communications functionality

Introduction

Wishful Woodchuck is a non-persistent keylogger which contains some capability previously observed
in use by Turla. This includes XOR 0x55 obfuscation of function names and use of the TVer

versioning string.

Many variants of this keylogger have been observed with different methods of execution, including as
a Windows executable file and as a DLL that is dropped and loaded by a separate executable. This
includes variants compiled for x86 and x64 Windows architectures.

In all analysed variants the functionality is the same: Windows APIs are used to hook the keyboard,
and keystrokes are then written to a file on disk in an encoded format.

Malware details

Metadata

Filename msvrt.exe

Description Dropper for keylogger DLL

Size 122880 bytes

Type Windows Executable (PE) x86

MD5 4f97351fd325ecc4b1bcf10b67dfa885

SHA-1 8aac9cb8f12ffcf98a8bad5391e33ccf1021f60c

SHA-256 5af100c1781e80ecedc09b43430e58fe38319e944b65c0f622c71f42985957a1

Compile time 2013-06-26 14:22:03

Filename lMM32.dll

Description Keylogger DLL for x86, dropped by msvrt.exe, called by exports

Size 62464 bytes

Type Windows Executable (PE) x86

MD5 887fba081dc7be123be7126cedae3e57

SHA-1 c4453b2dd4887ccdd2eccd19bad830d71c300943

SHA-256 740b27fc5552e5ac3c3655e9c598ed5711cfce442cc64e39af7dca8c468aad09

Compile time 2013-06-26 14:21:28

Filename hlpapi.dll

Description Keylogger DLL for x86 architecture

Size 61440 bytes

Type Windows Executable (PE) x86

MD5 ca578729316f35db156849ba397df0a8

SHA-1 bc14776cd0b4f1cf7b42f2dd1ab931143ace9efb

SHA-256 3b7060063814ff7dbdda98b30d35282a5686e0b965e79ee89b1d9d279b5c125a

Compile time 2015-03-24 13:22:04

Filename Manualmap_injector.exe

Description Keylogger DLL for x64 architecture

Size 220160 bytes

Type Windows Executable (PE) x64

MD5 f7570b7ec498bcd086a5318d9a9bcb0f

SHA-1 24abbcc1a326249d2e0f4ba159edbba43b15345b

SHA-256 dd40335044873fef29fca893a06eac4da0b1750651251c118b40e558c767c993

Compile time 2015-03-31 19:48:33

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Collection T1056.001 Input Capture:
Keylogging

Wishful Woodchuck uses Windows API calls to
log keystrokes

Defense
Evasion

T1027 Obfuscated Files or
Information

Wishful Woodchuck uses multi-byte XOR
obfuscation of strings in its binary and log file

Defense
Evasion

T1027 Obfuscated Files or
Information

Wishful Woodchuck dynamically resolves
Windows API functions using names XORed
with 0x55

Defense
Evasion

T1036.005 Masquerading:
Match Legitimate
Name or Location

Wishful Woodchuck uses a filename
(lmm32.dll) similar to a legitimate Windows

signed binary (imm32.dll)

Functionality

Overview

Three versions of the keylogger DLL and a dropper executable have been analysed:

• lmm32.dll is dropped by an executable dropper (msvrt.exe) and is a 32-bit Windows DLL

that provides its functionality using exported functions.

• hlpapi.dll is a 32-bit Windows DLL which does not export any functions.

• ManualMap_Injector.exe is a 64-bit Windows DLL which does not export any functions.

Analysing these files shows the behaviour is very similar across them all and, unless otherwise
specified, the following analysis is based on hlpapi.dll.

Mutex

In each analysed sample, Wishful Woodchuck creates a mutex and uses as its name the account
username from which it is running, to ensure that only one instance runs at a time.

https://attack.mitre.org/techniques/T1056/001/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1036/005/

Dropper

As described in the previous section, one variant of Wishful Woodchuck consists of a dropper that
contains a DLL with exported functions.

msvrt.exe is a Windows executable file which drops a DLL containing the main keylogging

functionality to a statically configured filename. If executed with no arguments, it will drop the file and
call its SetHook export, but it also accepts the following arguments:

• -k : the DLL export SetHook will be called.

o This function implements the keylogger functionality as described in the 'Keylogger'
section of this report.

• -w : the DLL export SetWinCheck will be called.

o This function will write to the logfile with the header information and the details on the
current process, with no keylogging occurring.

The dropped DLL is stored as a resource in the dropper with the name ‘BINARY’ and ID 145.

Although the log file produced by the keylogger and the strings inside the binaries are encoded, the
resource containing the keylogger binary is in plaintext.

Keylogger

Keystroke messages are hooked using the Windows API call SetWindowsHookExW and are logged

to a file msimm.dat on disk. This log file is obfuscated using a static multi-byte rotating XOR key, as

described in the ’Defence Evasion’ section of this report, and the plaintext consists of UTF-16 strings.
If the log file already exists, future runs of the keylogger will be appended to the same log file, starting
from the Start string. An example deobfuscated log file is shown in Figure 1.

Figure 1: Example keylogger log file

KSL0

TVer=21.0

Start

[u]:DESKTOP-RBMHRT6\user

[26.05.2021 14:29:30.471] [h]:656738 [pid]:5480 [pn]:notepad++.exe [t]:new 1 - Notepad++

[26.05.2021 14:29:30.471] [h]:656738 [pid]:5480 [pn]:notepad++.exe [t]:new 1 - Notepad++
 1234...

[26.05.2021 15:37:33.601] [h]:525034 [pid]:2460 [pn]:explorer.exe [t]:Windows
 sys<Up><Up><Down><Down><Down><Down><Down><Down><Down><Down><Up><Up><Enter>imm

[26.05.2021 15:52:03.856] [h]:65796 [pid]:2460 [pn]:explorer.exe [t]:Program Manager
 <!LCtrl>c<#LCtrl>

The log file starts with a header consisting of a fixed magic string (KSL0), a version number

(TVer=21.0), the word Start to indicate the beginning of the key log entries and a line indicating

the username of the current user. The format string for logging this information contains both Start

and [u]: indicating the user will only be printed once at the start of each keylogging session.

As shown in Figure 1, key log entries consist of a single line containing several tab-delimited
metadata fields followed by a sequence of captured keystrokes. Each line is prefixed with a
millisecond-accurate timestamp and is terminated with LF – however note that captured whitespace,
including new line characters, will be logged directly into the file.

Metadata fields are presented in the following format. Field identifiers are described in Table 1.

Data structure

[26.05.2021 14:29:30.471] \t [h]:656738 \t [pid]:5480 \t [pn]:notepad++.exe \t
[t]:new 1 - Notepad++ \t 1234…

Timestamp Window Handle Process ID Process Name Title Keystrokes

Figure 2: Log entry field structure

Field Description

KSL0 Fixed string to indicate start of log file

TVer Description

Start Indicates beginning of keystroke message logging

[u] The current user

[h] Handle to the foreground window

[pid] Process ID associated with currently focused window

[pn] Process name associated with currently focused window

[t] Title of currently focused window

Table 1: Log file metadata descriptions

There are certain non-text keystrokes which are represented in the log file with descriptive labels. A
complete list of these labels is included in the appendix of this report.

Defence evasion

Wishful Woodchuck employs several methods to evade detection.

Import resolution
Windows API functions are dynamically resolved by looking up the function name in the relevant DLL
export tables. These function names are obfuscated with single-byte XOR of 0x55 to prevent static
detection. The strings for the module names from which these functions are imported are also under
XOR 0x55 obfuscation.

String obfuscation
The strings required for the running of the binary, including the strings to be written to the log file, are
stored in obfuscated form where hardcoded string values are multi-byte XORed with a hardcoded key.

The binaries analysed all contain the same 100-byte-long key which is repeated to produce a
keystream. Each string is obfuscated using a specific seed value which is used as a starting index
into this stream, allowing each string to be obfuscated using a unique stream of key bytes. This
stream is then XORed with the hardcoded encoded strings.

For the strings in the dropper binary, this seed value is hard coded. The same method is used for
obfuscating the log file, where the seed value corresponds to the file size of the Wishful Woodchuck
DLL that generated the log file.

The seed values for the strings in the keylogger binaries are also hard coded, however in this case
the keystream initial index is calculated by first subtracting 2 from the hard coded values. Example
scripts to implement both versions of this obfuscation are included in the appendix of this report.

DLL naming
In one analysed sample, the keylogger file is named lmm32.dll. As imm32.dll is the name of a

legitimate signed Windows binary, this name has likely been selected to attempt to blend with normal
operating system behaviour. Additionally, the description for this file is Multi-User Windows

IMM32 API CIient DLL (note the capital I in CIent) which is similar to the description for the

legitimate version, with one character mistyped. When viewed in the properties window, this is hard to
spot (as shown below), and is only noticeable when the font is changed. This may stop immediate
[human] recognition that an unrecognised file is running but it would not stop detection by automated
methods.

Communications

Wishful Woodchuck contains no network communications functionality.

Conclusion

This keylogger is basic in its implementation, and although there are some defence evasion
techniques included, they are simple. There is no mechanism for this to persist, so it will only execute
while the host is running. Captured keystrokes are written to disk in an encoded format in the location
from which the file was run. Retro-hunting found many variants of this keylogger, which reuse
indicators such as the hardcoded multi-byte XOR key.

The TVer string in the log file is a known way that the Turla threat group reference versioning for their

malware. Encoding Windows API function names with XOR 0x55 is also observed across numerous
previously analysed Turla binaries. These observations would both suggest that this keylogger was
written by Turla.

Detection

Indicators of compromise

Type Description Values

File Log file dropped to disk
by keylogger DLL to
same location from
which it runs.

msimm.dat

Timestamp

Multiple versions of the
keylogger are compiled
with the same
timestamp.

2015-03-31 19:48:33

Rules and signatures

Description
Detects binaries containing the hardcoded XOR key from the keylogger
binaries.

Precision No false positives seen from Virus Total retro-hunts.

Rule type YARA

rule wishfulwoodchuck_hardcoded_xorkey

{

 meta:

 author = "NCSC"

 description = "Finds binaries containing the hardcoded XOR key

from the keylogger binaries"

 strings:

 $xorkey = {0A 19 59 2D 6C 59 6F FA 8B 6F 9B FF 37 9B BD 7B 59 4B

7B DD 0F 64 91 C7 D6 9C 6F 7B 9C 01 9C 91 79 C7 C8 C9 DF E1 FA FF 04 08

59 E6 64 6D 37 9B 38 81 2D 81 65 7D 66 9A}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description
Code to compare keystroke to certain values, mapping to non-character keys,
such as up, down etc.

Precision No false positives seen from Virus Total retro-hunts.

Rule type YARA

rule wishfulwoodchuck_CheckKeystrokeValue

{

 meta:

 author = "NCSC"

 description = "Keystroke comparison code from binary"

 strings:

 // mov eax, [ebp+1504h+var_1520]

 // mov eax, [eax]

 // cmp eax, 0A1h

 // jz short loc_10002A89

 // cmp eax, 0A0h

 // jz short loc_10002A89

 // cmp eax, 0A3h

 // jz short loc_10002A89

 // cmp eax, 0A2h

 $1 = {8B ?? ?? 8B 00 3D A1 00 00 00 74 ?? 3D A0 00 00 00 74

?? 3D A3 00 00 00 74 ?? 3D A2 00 00 00}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects obfuscation occurring before the log file is written to disk.

Precision No false positives seen from Virus Total retro-hunts.

Rule type YARA

rule wishfulwoodchuck_obfuscation

{

 meta:

 author = "NCSC"

 description = "Obfuscation code from binary"

 strings:

 $1 = {B8 1F 85 EB 51 F7 E3 C1 EA 05 6B D2 64 8B C3 2B C2 0F

BE 90 ?? ?? ?? ?? 0F BE 04 39 33 D0 88 14 39 43 89 ?? ?? ?? ?? ?? 41 EB

??}

 // mov eax, 51EB851Fh

 // mul ebx

 // shr edx, 5

 // imul edx, 64h ; 'd'

 // mov eax, ebx

 // sub eax, edx

 // movsx edx, keylist[eax]

 // movsx eax, byte ptr [ecx+edi]

 // xor edx, eax

 // mov [ecx+edi], dl

 // inc ebx

 // mov dword_1000FCE4, ebx

 // inc ecx

 // jmp short loc_100013D0

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Unique file description

Precision No false positives seen from Virus Total retro-hunts.

Rule type YARA

rule wishfulwoodchuck_file_description

{

 meta:

 author = "NCSC"

 description = "Unique file description"

 strings:

 $description = "Multi-User Windows IMM32 API CIient DLL" wide

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Encoded log file header, will not change as long as the key doesn’t change.

Precision No false positives seen from Virus Total retro-hunts.

Rule type YARA

rule wishfulwoodchuck_logfile_encodedheader

{

 meta:

 author = "NCSC"

 description = "Encoded log file header"

 strings:

 $header = {41 19 0A 2D 20 59 5F FA 81 6F CF FF 61 9B D8 7B 2B 4B

46}

 condition:

 all of them

}

Appendix

Log file decryption script

import os, sys

xor_key = [0x0A, 0x19, 0x59, 0x2D, 0x6C, 0x59, 0x6F, 0xFA, 0x8B, 0x6F,

0x9B, 0xFF, 0x37, 0x9B, 0xBD, 0x7B, 0x59, 0x4B, 0x7B, 0xDD, 0x0F, 0x64,

0x91, 0xC7, 0xD6, 0x9C, 0x6F, 0x7B, 0x9C, 0x01, 0x9C, 0x91, 0x79, 0xC7,

0xC8, 0xC9, 0xDF, 0xE1, 0xFA, 0xFF, 0x04, 0x08, 0x59, 0xE6, 0x64, 0x6D,

0x37, 0x9B, 0x38, 0x81, 0x2D, 0x81, 0x65, 0x7D, 0x66, 0x9A, 0x6F, 0xBD,

0x65, 0x59, 0x4B, 0x2D, 0x1A, 0x63, 0x59, 0x7B, 0x65, 0x59, 0x59, 0x0B,

0x4E, 0x85, 0x8C, 0x91, 0x88, 0x59, 0x0C, 0x01, 0x4E, 0x3A, 0x0D, 0x58,

0x38, 0x16, 0x91, 0x57, 0x7E, 0x68, 0x6A, 0x55, 0x42, 0x55, 0x5D, 0xC5,

0x9E, 0x4E, 0x17, 0x3B, 0x0F, 0x42]

def decode_function(buffer, seed):

 plaintext = b""

 for i in range(0, len(buffer)):

 key_index = (seed + i) % 100

 plaintext += bytes([buffer[i] ^ xor_key[key_index]])

 return plaintext

def decode_and_output_file(logfile, dllsize, outputfile):

 with open(logfile, "rb") as infile:

 plaintext = decode_function(infile.read(), int(dllsize))

 with open(outputfile, "ab") as outfile:

 outfile.write(plaintext)

def decode_and_output_bytes(byte_string, seed):

 plaintext = decode_function(bytearray.fromhex(byte_string),

int(seed))

 print(plaintext.decode('utf-16-le'))

Usage: python3 decode.py <mode> <value> <seed> [<outfile>]

Args:

mode: “1” to decode logfile, “2” to decode string

value: Logfile path for mode “1”, encoded string for mode “2”

seed: Length of DLL for mode “1”, seed for mode “2”

outfile: Path to write plaintext log file to, mode “1” only

if __name__ == "__main__":

 # Mode - 1 for FILE, 2 for BYTES

 mode = int(sys.argv[1])

 # file to decode OR byte string to decode

 valtodecode = sys.argv[2]

 # DLL length or string seed value

 seed = sys.argv[3]

 if mode == 1:

 # Output file (logfile decode only)

 outfile = sys.argv[4]

 decode_and_output_file(valtodecode, seed, outfile)

 elif mode == 2:

 decode_and_output_bytes(valtodecode, seed)

 else:

 sys.exit(1)

Keylogger binary strings decryption script

import sys

xor_key = [0x0A, 0x19, 0x59, 0x2D, 0x6C, 0x59, 0x6F, 0xFA, 0x8B, 0x6F,

0x9B, 0xFF, 0x37, 0x9B, 0xBD, 0x7B, 0x59, 0x4B, 0x7B, 0xDD, 0x0F, 0x64,

0x91, 0xC7, 0xD6, 0x9C, 0x6F, 0x7B, 0x9C, 0x01, 0x9C, 0x91, 0x79, 0xC7,

0xC8, 0xC9, 0xDF, 0xE1, 0xFA, 0xFF, 0x04, 0x08, 0x59, 0xE6, 0x64, 0x6D,

0x37, 0x9B, 0x38, 0x81, 0x2D, 0x81, 0x65, 0x7D, 0x66, 0x9A, 0x6F, 0xBD,

0x65, 0x59, 0x4B, 0x2D, 0x1A, 0x63, 0x59, 0x7B, 0x65, 0x59, 0x59, 0x0B,

0x4E, 0x85, 0x8C, 0x91, 0x88, 0x59, 0x0C, 0x01, 0x4E, 0x3A, 0x0D, 0x58,

0x38, 0x16, 0x91, 0x57, 0x7E, 0x68, 0x6A, 0x55, 0x42, 0x55, 0x5D, 0xC5,

0x9E, 0x4E, 0x17, 0x3B, 0x0F, 0x42]

def xor(inbyte, keybyte):

 print(chr(inbyte ^ keybyte))

def decode(encoded, seed):

 value = -2

 counter = 0

 while counter < len(encoded):

 xor(int(encoded[counter], 16), xor_key[(seed+value)%100])

 counter+=1

 value +=1

Usage: python3 decode.py <stringbytes> <seed>

Args:

stringbytes: The bytes to decode in format “0x12 0x34 0x56 0x78”

seed: seed as defined per string in the keylogger binary

if __name__ == "__main__":

 inlist = (sys.argv[1]).split(' ')

 seed = int(sys.argv[2])

 decode(inlist, seed)

List of log file values for non-text keystrokes

<r/>
<r*>
<r->
<r+>
<r1>
<r2>
<r3>
<r4>
<r5>
<r6>
<r7>
<r8>
<r9>
<r0>
<r.>
<F1>
<F2>
<F3>
<F4>
<F5>
<F6>
<F7>
<F8>
<F9>
<F10>
<F11>
<F12>

<#RShift>
<#LShift>
<#RCtrl>
<#LCtrl>
<!RShift>
<!LShift>
<!RCtrl>
<!LCtrl>
<PageUp>
<PageDown>
<NumLock>
<Down>
<Up>
<Right>
<Left>

<Print>
<End>
<Insert>
<CapsLock>
<Enter>
<Backspace>
<Esc>
<Tab>
-
+
[
]
\
;
/
`
'
,
.

Additional files found through retro-hunts

Filename lMM64.dll

Description Keylogger DLL for x64 architecture

Size 62464 bytes

Type Windows Executable (PE) x64

MD5 59b57bdabee2ce1fb566de51dd92ec94

SHA-1 9eb3c79dc361022a9d6ce3e2aa4962f240baf6f2

SHA-256 b7b5d28be983c774ef83a8960a68134732a79818c572e8800cea6428f27fb114

Compile time 2015-03-31 19:48:33

Filename Manualmap_injector.vmp.exe

Description Keylogger DLL for x64 architecture

Size 1299968 bytes

Type Windows Executable (PE) x64

MD5 cd141c202737af15cac2612e0659aeb1

SHA-1 d5a7aaab836dcc539a3224bbb43a7f71f1aed37c

SHA-256 d76fe44316171dbed42265be0af798ce21ac917b42b3b5d01372e67781e579b3

Compile time 2015-03-31 19:48:33

Filename N/A

Description Keylogger DLL for x86 architecture

Size 94208 bytes

Type Windows Executable (PE) x64

MD5 1d9fbd02954d4be1dfb0ff2fd27a6500

SHA-1 32ea80d2fc3c8db986d0eaa16fbfc8127b1a4936

SHA-256 05e045490c80c4464f3c6fb6c0c48bf040a0c482d6792e9e11471f1566e96ec6

Compile time 2015-03-31 19:48:33

Filename WEXTRACT.EXE

Description Keylogger executable for x86 architecture

Size 37892 bytes

Type Windows Executable (PE) x86

MD5 792c4348c6a2d6f055b374beded31379

SHA-1 4c83a37489ff370523166b08159885fa245db83c

SHA-256 c4a1cd6916646aa502413d42e6e7441c6e7268926484f19d9acbf5113fc52fc8

Compile time 2009-02-02 13:06:31

Filename WEXTRACT.EXE

Description Keylogger executable for x86 architecture

Size 110592 bytes

Type Windows Executable (PE) x86

MD5 a864cb7c29991475187968ad0ac5cd54

SHA-1 ec52ebda5c82084e797c275e76f5002b89b74fc4

SHA-256 e302a4cafd2d92fa99a79fd45cfc43b015f8ce444528fb78f32a88a874a52779

Compile time 2006-07-11 05:45:21

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings and
recommendations made have not been provided with the intention of avoiding all risks and following
the recommendations will not remove all such risk. Ownership of information risks remains with the
relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

