
TLP MARKING: TLP:CLEAR

Version 2

22nd October 2024
© Crown Copyright 2024

Malware Analysis Report

Pygmy Goat

Network Device Backdoor.

TLP CLEAR

TLP MARKING: TLP:CLEAR

Pygmy Goat
Network Device Backdoor.

Executive summary

• Uses LD_PRELOAD to get loaded into /bin/sshd and hook its accept function.
• Listens on a raw socket for incoming ICMP packets to trigger a connect

back, or uses the hooked accept function to search for a sequence of
magic bytes in SSH connections.

• Functionality includes remote shell, packet capture, cron tasks, and
creating a reverse SOCKS proxy server.

Introduction

Pygmy Goat is a native x86-32 ELF shared object that was discovered on
Sophos XG firewall devices, providing backdoor access to the device.

The LD_PRELOAD environment variable is used to load the shared object into the
sshd (SSH daemon) binary.

• Sample creates a raw ICMP socket to monitor for incoming packets,
which contain an AES encrypted TCP callback IP and port for the sample
to connect into for C2 functionality.

• Sample uses its LD_PRELOAD position to hook the socket accept function to
peek at incoming traffic looking for a specific SSH protocol
announcement, and then reusing that connection as an alternative
means for C2.

• Sample uses a hardcoded embedded CA certificate masquerading as
Fortinet to establish a TLS connection with the C2 and verify its peer.

• C2 commands enable the actor to establish a remote shell on the
device, start a packet capture, create cron tasks, and create a reverse
SOCKS proxy to send traffic to devices behind the firewall.

TLP MARKING: TLP:CLEAR

Malware details

Metadata

Filename libsophos.so

Description Malicious Shared Object loaded into /bin/sshd

Size 1,759,412 bytes

MD5 c71cd27efcdb8c44ab8c29d51f033a22

SHA-1 71f70d61af00542b2e9ad64abd2dda7e437536ff

SHA-256 6455de74ae15071fa98f18cdbc3148c967755e69df7dee747bc31d0387751162

Filename libsophos.so

Description
Earlier variant of libsophos.so, missing the reverse proxy functionality,
and using VMProtect to obfuscate the binary

Size 3,056,741 bytes

MD5 3f28196675dc8cb20cf5b5f80ea29310

SHA-1 7ace663c22b3e800fc17c1477d54b533f7002833

SHA-256 823b079c75f4e6a5905d9eea9a60c62e1f0995bfc25764d1ba0407a5bd78c962

TLP MARKING: TLP:CLEAR

Functionality

Persistence
Pygmy Goat expects to have been loaded into the /bin/sshd process using the
LD_PRELOAD environment variable, as evident by a hooked accept function, and
immediate unset of the LD_PRELOAD environment variable when the binary is
loaded. This suggests that the actor achieves persistence on the victim device
through setting the LD_PRELOAD environment on boot, for example by modifying
a start-up script, with similar contents to:

 LD_PRELOAD=”libsophos.so” /bin/sshd

This would ensure that the malicious libsophos.so file would be loaded into the
next executed ssh daemon at system start, with the ability to overload existing
functions in the sshd binary.

Backdoor
The Pygmy Goat libsophos.so binary has its INIT_ARRAY section populated
with a single entry pointing at a main_constructor function (named by the
embedded debug symbols left inside the binary), which is guaranteed to
execute before the actual functionality of the sshd binary.

The main_constructor function forks so as not to block the loading of the
legitimate sshd process, and then immediately unsets the LD_PRELOAD
environment variable for itself and all future child forks; although it is worth
noting the original parent sshd process would still have the LD_PRELOAD variable
in its environment at this point.

The malware checks the uptime of the host system to ensure it has been up
for over 60 seconds, sleeping if not. It then attempts to acquire an exclusive
lock on a single-instance pid file at ‘/var/run/sshd.pid’, to ensure it is the only
instance of the malware currently executing. The malware forks again to
launch a crond daemon through a statically compiled embedded BusyBox 1.33.1
to execute later cron tasks that the actor can deploy to the device through the
malware.

Finally, the malware creates an ICMP raw socket to listen for all ICMP packets
received by the device, as well as a Unix socket listening for connections to
‘/tmp/.sshd.ipc’

TLP MARKING: TLP:CLEAR

As Pygmy Goat is loaded into the sshd process with LD_PRELOAD, any symbols
exported by the libsophos.so shared object will replace the functions of any
symbols imported by /bin/sshd. Finding the intersection of the exports and
imports of each reveals a single symbol; the accept function, effectively
hooking any TCP connections made to the sshd daemon.

On being called, the hooked accept function uses dlsym to find and invoke the
‘real’ accept function. The function then does a non-consuming, non-blocking
peek at the first 0x17 bytes which it repeats every 100 milliseconds for three
seconds until either 0x17 bytes are seen, the connection drops, or the time
elapses. If 0x17 bytes are seen, they are compared against a hardcoded string
of bytes:

 SSH-2.0-OpenSSH_5.3p1\r\n1

If these bytes are seen, the malware detects a backdoor SSH connection,
establishing a connection to the /tmp/.sshd.ipc Unix socket created in the
main_constructor function, which it uses to forward all data to and from the
backdoor SSH connection.

The hooked accept function also unsets the LD_PRELOAD variable immediately
when it is called.

Since the accept function is called in the parent sshd process which still had the
LD_PRELOAD variable set, this hides the technique from casual forensics of the
device as the environment variable is only set in the sshd process until the first
time it accepts a TCP connection. That said, if the actor doesn’t attempt to
connect to a Pygmy Goat victim after it first boots, or the actor uses the ICMP
wake up method, the LD_PRELOAD variable will never be unset in the parent sshd
process.

1 Although this is a legitimate OpenSSH protocol version, it was released in 2009 and
presumably deemed unlikely to appear naturally by the malware developers in 2024.

TLP MARKING: TLP:CLEAR

Commands
Once a connection has been established with its C2, Pygmy Goat has a
number of commands it can execute according to a command ID byte. Each
command is detailed further in C2 Tasking.

Command
ID

Description

0x01 Responds with the current date and time

0x02 Responds with system details

0x03 Spawns a /bin/sh shell

0x04 Spawns a /bin/csh shell

0x05 Spawns crontab to create new scheduled tasks

0x06 Starts a packet capture

0x07 Connects back to an EarthWorm Server (see EarthWorm Reverse Socks Proxy) to

create a reverse SOCKS5 proxy

Communications

Pygmy Goat has two mechanisms that the actor can use to establish a C2
connection to the backdoor on demand:

• Port knock via ICMP raw socket.
• Response to the hooked SSH accept.

ICMP Port Knock
On receiving an ICMP packet of any type, Pygmy Goat will attempt to decrypt
the first 0x10 bytes in the ICMP Data section with a hardcoded IV and key, using
AES-256-CBC with null padding:

 IV: 43 4a fc 1c 5d 9d 77 06 67 c1 c3 0e c1 37 47 bb

 Key: 59 4b 6e 77 51 6a 6d 41 54 62 41 6e 52 6f 5a 6d

 30 66 47 37 55 5a 57 62 32 59 55 78 55 51 50 77

Once decrypted, the first four bytes are compared to a magic byte sequence
to ensure the data is in fact a C2 control packet and not a legitimate ICMP
packet:

 ef 12 68 45

TLP MARKING: TLP:CLEAR

The next four bytes are treated as a big-endian IPv4 address, followed by two
bytes of a big-endian TCP port number, with the remainder of the data being
ignored.

All example data in this report has been generated in a virtual environment
using the Pygmy Goat sample, and as such is indicative, rather than being
procured from any victim or actor data.

Encrypted ICMP packet

00 00 cc a2 5a 9d 00 01 d7 00 9e 6c 17 c0 82 6b 95 f0 fa 5b 5b 4e
dd 8a

Echo (ping) reply ICMP code ICMP checksum

ICMP identifier Sequence Number Encrypted Data

Decrypted packet data

ef 12 68 45 c0 a8 06 01 1e 61 00 00 00 00 00 00

Magic validation
bytes

IPv4 Address
192.168.6.1

TCP port 7777

AES padding

Once the C2 IPv4 address and TCP port have been extracted, Pygmy Goat
establishes a TLS connection with the server, verifying the certificate presented
by the server against a Root CA certificate embedded inside the libsophos.so
binary (see TLS Root CA Certificate). This is somewhat noteworthy as it means
the actor can send the ICMP packets from a different device to the C2
connect-back server.

The Root CA Certificate claims to have been issued by FortiGate, Fortinet Ltd.,
another network device vendor.

TLP MARKING: TLP:CLEAR

SSH Accept Hook
Once the hooked accept function has identified the SSH version magic bytes
and delegated the connection over the Unix socket at ‘/tmp/.sshd.ipc’, Pygmy
Goat continues to perform a fake SSH handshake with hardcoded data,
reading a fixed number of bytes in response, although ignoring the contents:

Fake SSH Handshake (C2 -> Malware)

0x0000
0x0010

53 53 48 2d 32 2e 30 2d 4f 70 65 6e 53 53 48 5f
35 2e 33 70 31 0d 0a

SSH-2.0-OpenSSH_
5.3p1..

SSH Version Exchange (peeked at following initial accept)

Fake SSH Handshake (Malware -> C2)

0x0000 53 53 48 2d 32 2e 30 2d 44 38 70 6a 45 0d 0a SSH-2.0-D8pjE..

SSH Version Exchange

Fake SSH Handshake (Malware -> C2)

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0
0x00c0
0x00d0
0x00e0
0x00f0
0x0100
0x0110
0x0120
0x0130
0x0140
0x0150
0x0160
0x0170
0x0180
0x0190
0x01a0
0x01b0

00 00 05 4c 0a 14 fd 8d cf 7b 16 6d de 60 6f f4
1c 19 89 c1 93 ee 00 00 00 80 63 75 72 76 65 32
35 35 31 39 2d 73 68 61 32 35 36 40 6c 69 62 73
73 68 2e 6f 72 67 2c 64 69 66 66 69 65 2d 68 65
6c 6c 6d 61 6e 2d 67 72 6f 75 70 2d 65 78 63 68
61 6e 67 65 2d 73 68 61 32 35 36 2c 64 69 66 66
69 65 2d 68 65 6c 6c 6d 61 6e 2d 67 72 6f 75 70
2d 65 78 63 68 61 6e 67 65 2d 73 68 61 31 2c 64
69 66 66 69 65 2d 68 65 6c 6c 6d 61 6e 2d 67 72
6f 75 70 31 34 2d 73 68 61 31 00 00 00 13 73 73
68 2d 72 73 61 2c 73 73 68 2d 65 64 32 35 35 31
39 00 00 00 bb 63 68 61 63 68 61 32 30 2d 70 6f
6c 79 31 33 30 35 40 6f 70 65 6e 73 73 68 2e 63
6f 6d 2c 61 65 73 31 32 38 2d 63 74 72 2c 61 65
73 31 39 32 2d 63 74 72 2c 61 65 73 32 35 36 2d
63 74 72 2c 61 72 63 66 6f 75 72 32 35 36 2c 61
72 63 66 6f 75 72 31 32 38 2c 61 65 73 31 32 38
2d 63 62 63 2c 33 64 65 73 2d 63 62 63 2c 62 6c
6f 77 66 69 73 68 2d 63 62 63 2c 63 61 73 74 31
32 38 2d 63 62 63 2c 61 65 73 31 39 32 2d 63 62
63 2c 61 65 73 32 35 36 2d 63 62 63 2c 61 72 63
66 6f 75 72 2c 72 69 6a 6e 64 61 65 6c 2d 63 62
63 40 6c 79 73 61 74 6f 72 2e 6c 69 75 2e 73 65
00 00 00 bb 63 68 61 63 68 61 32 30 2d 70 6f 6c
79 31 33 30 35 40 6f 70 65 6e 73 73 68 2e 63 6f
6d 2c 61 65 73 31 32 38 2d 63 74 72 2c 61 65 73
31 39 32 2d 63 74 72 2c 61 65 73 32 35 36 2d 63
74 72 2c 61 72 63 66 6f 75 72 32 35 36 2c 61 72

...L..ý.Ï{.mÞ`oô

...Á.î....curve2
5519-sha256@libs
sh.org,diffie-he
llman-group-exch
ange-sha256,diff
ie-hellman-group
-exchange-sha1,d
iffie-hellman-gr
oup14-sha1....ss
h-rsa,ssh-ed2551
9...»chacha20-po
ly1305@openssh.c
om,aes128-ctr,ae
s192-ctr,aes256-
ctr,arcfour256,a
rcfour128,aes128
-cbc,3des-cbc,bl
owfish-cbc,cast1
28-cbc,aes192-cb
c,aes256-cbc,arc
four,rijndael-cb
c@lysator.liu.se
...»chacha20-pol
y1305@openssh.co
m,aes128-ctr,aes
192-ctr,aes256-c
tr,arcfour256,ar

TLP MARKING: TLP:CLEAR

0x01c0
0x01d0
0x01e0
0x01f0
0x0200
0x0210
0x0220
0x0230
0x0240
0x0250
0x0260
0x0270
0x0280
0x0290
0x02a0
0x02b0
0x02c0
0x02d0
0x02e0
0x02f0
0x0300
0x0310
0x0320
0x0330
0x0340
0x0350
0x0360
0x0370
0x0380
0x0390
0x03a0
0x03b0
0x03c0
0x03d0
0x03e0
0x03f0
0x0400
0x0410
0x0420
0x0430
0x0440
0x0450
0x0460
0x0470
0x0480
0x0490
0x04a0
0x04b0
0x04c0
0x04d0
0x04e0
0x04f0
0x0500

63 66 6f 75 72 31 32 38 2c 61 65 73 31 32 38 2d
63 62 63 2c 33 64 65 73 2d 63 62 63 2c 62 6c 6f
77 66 69 73 68 2d 63 62 63 2c 63 61 73 74 31 32
38 2d 63 62 63 2c 61 65 73 31 39 32 2d 63 62 63
2c 61 65 73 32 35 36 2d 63 62 63 2c 61 72 63 66
6f 75 72 2c 72 69 6a 6e 64 61 65 6c 2d 63 62 63
40 6c 79 73 61 74 6f 72 2e 6c 69 75 2e 73 65 00
00 01 68 75 6d 61 63 2d 36 34 2d 65 74 6d 40 6f
70 65 6e 73 73 68 2e 63 6f 6d 2c 75 6d 61 63 2d
31 32 38 2d 65 74 6d 40 6f 70 65 6e 73 73 68 2e
63 6f 6d 2c 68 6d 61 63 2d 73 68 61 32 2d 32 35
36 2d 65 74 6d 40 6f 70 65 6e 73 73 68 2e 63 6f
6d 2c 68 6d 61 63 2d 73 68 61 32 2d 35 31 32 2d
65 74 6d 40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c
68 6d 61 63 2d 73 68 61 31 2d 65 74 6d 40 6f 70
65 6e 73 73 68 2e 63 6f 6d 2c 75 6d 61 63 2d 36
34 40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c 75 6d
61 63 2d 31 32 38 40 6f 70 65 6e 73 73 68 2e 63
6f 6d 2c 68 6d 61 63 2d 73 68 61 32 2d 32 35 36
2c 68 6d 61 63 2d 73 68 61 32 2d 35 31 32 2c 68
6d 61 63 2d 73 68 61 31 2c 68 6d 61 63 2d 6d 64
35 2d 65 74 6d 40 6f 70 65 6e 73 73 68 2e 63 6f
6d 2c 68 6d 61 63 2d 72 69 70 65 6d 64 31 36 30
2d 65 74 6d 40 6f 70 65 6e 73 73 68 2e 63 6f 6d
2c 68 6d 61 63 2d 6d 64 35 2d 39 36 2d 65 74 6d
40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c 68 6d 61
63 2d 6d 64 35 2c 68 6d 61 63 2d 72 69 70 65 6d
64 31 36 30 2c 68 6d 61 63 2d 72 69 70 65 6d 64
31 36 30 40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c
68 6d 61 63 2d 6d 64 35 2d 39 36 00 00 01 68 75
6d 61 63 2d 36 34 2d 65 74 6d 40 6f 70 65 6e 73
73 68 2e 63 6f 6d 2c 75 6d 61 63 2d 31 32 38 2d
65 74 6d 40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c
68 6d 61 63 2d 73 68 61 32 2d 32 35 36 2d 65 74
6d 40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c 68 6d
61 63 2d 73 68 61 32 2d 35 31 32 2d 65 74 6d 40
6f 70 65 6e 73 73 68 2e 63 6f 6d 2c 68 6d 61 63
2d 73 68 61 31 2d 65 74 6d 40 6f 70 65 6e 73 73
68 2e 63 6f 6d 2c 75 6d 61 63 2d 36 34 40 6f 70
65 6e 73 73 68 2e 63 6f 6d 2c 75 6d 61 63 2d 31
32 38 40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c 68
6d 61 63 2d 73 68 61 32 2d 32 35 36 2c 68 6d 61
63 2d 73 68 61 32 2d 35 31 32 2c 68 6d 61 63 2d
73 68 61 31 2c 68 6d 61 63 2d 6d 64 35 2d 65 74
6d 40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c 68 6d
61 63 2d 72 69 70 65 6d 64 31 36 30 2d 65 74 6d
40 6f 70 65 6e 73 73 68 2e 63 6f 6d 2c 68 6d 61
63 2d 6d 64 35 2d 39 36 2d 65 74 6d 40 6f 70 65
6e 73 73 68 2e 63 6f 6d 2c 68 6d 61 63 2d 6d 64
35 2c 68 6d 61 63 2d 72 69 70 65 6d 64 31 36 30
2c 68 6d 61 63 2d 72 69 70 65 6d 64 31 36 30 40
6f 70 65 6e 73 73 68 2e 63 6f 6d 2c 68 6d 61 63
2d 6d 64 35 2d 39 36 00 00 00 15 6e 6f 6e 65 2c

cfour128,aes128-
cbc,3des-cbc,blo
wfish-cbc,cast12
8-cbc,aes192-cbc
,aes256-cbc,arcf
our,rijndael-cbc
@lysator.liu.se.
..humac-64-etm@o
penssh.com,umac-
128-etm@openssh.
com,hmac-sha2-25
6-etm@openssh.co
m,hmac-sha2-512-
etm@openssh.com,
hmac-sha1-etm@op
enssh.com,umac-6
4@openssh.com,um
ac-128@openssh.c
om,hmac-sha2-256
,hmac-sha2-512,h
mac-sha1,hmac-md
5-etm@openssh.co
m,hmac-ripemd160
-etm@openssh.com
,hmac-md5-96-etm
@openssh.com,hma
c-md5,hmac-ripem
d160,hmac-ripemd
160@openssh.com,
hmac-md5-96...hu
mac-64-etm@opens
sh.com,umac-128-
etm@openssh.com,
hmac-sha2-256-et
m@openssh.com,hm
ac-sha2-512-etm@
openssh.com,hmac
-sha1-etm@openss
h.com,umac-64@op
enssh.com,umac-1
28@openssh.com,h
mac-sha2-256,hma
c-sha2-512,hmac-
sha1,hmac-md5-et
m@openssh.com,hm
ac-ripemd160-etm
@openssh.com,hma
c-md5-96-etm@ope
nssh.com,hmac-md
5,hmac-ripemd160
,hmac-ripemd160@
openssh.com,hmac
-md5-96....none,

TLP MARKING: TLP:CLEAR

0x0510
0x0520
0x0530
0x0540

7a 6c 69 62 40 6f 70 65 6e 73 73 68 2e 63 6f 6d
00 00 00 15 6e 6f 6e 65 2c 7a 6c 69 62 40 6f 70
65 6e 73 73 68 2e 63 6f 6d 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

zlib@openssh.com
....none,zlib@op
enssh.com.......
................

SSH Key Exchange Init

Fake SSH Handshake (C2 -> Malware)

0x0000 ?? * 0x490

SSH Key Exchange Init (Contents ignored by Pygmy Goat)

Fake SSH Handshake (C2 -> Malware)

0x0000 ?? * 0x30

SSH Key Exchange

Fake SSH Handshake (Malware -> C2)

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0
0x00c0

00 00 00 bc 08 1f 00 00 00 33 00 00 00 0b 73 73
68 2d 65 64 32 35 35 31 39 00 00 00 20 3d 5f 84
8d 6b d8 10 08 e4 91 22 7b 94 28 65 e0 e0 7a 76
83 3d 74 de 60 bf b7 4b 39 21 1d 99 1e 00 00 00
20 52 91 ba 65 28 66 56 d4 cd 7d 06 c0 6d 06 e8
88 01 8f 3e 3a 9a 1f 3f 1c f4 84 e6 57 39 75 f8
1b 00 00 00 53 00 00 00 0b 73 73 68 2d 65 64 32
35 35 31 39 00 00 00 40 29 cc f0 cc 16 c5 46 6e
52 19 82 8e 86 65 42 8c 1f 1a d4 c3 a5 b1 cb fc
c0 26 6c 31 3c 5c 90 3a 24 7d e4 d3 57 6d da 8e
cb f4 66 d1 cb 81 4f 63 fd 4a fa 06 e4 7e 4c a0
95 91 bd cb 97 a4 b3 0f 00 00 00 00 00 00 00 00
00 00 00 0c 0a 15 00 00 00 00 00 00 00 00 00 00

...¼.....3....ss
h-ed25519... =_.
.kØ..ä."{.(eààzv
.=tÞ`¿·K9!......
 R.ºe(fVÔÍ}.Àm.è
...>:..?.ô.æW9uø
....S....ssh-ed2
5519...@)ÌðÌ.ÅFn
R....eB...ÔÃ¥±Ëü
À&l1<\.:$}äÓWmÚ.
ËôfÑË.OcýJú.ä~L
..½Ë.¤³.........
................

SSH Key Exchange

Fake SSH Handshake (C2 -> Malware)

0x0000 ?? * 0x10

SSH New Keys

After the fake SSH handshake is complete, Pygmy Goat continues to establish
a legitimate TLS handshake over the fake SSH TCP connection, following the
same path as with the ICMP connect-back.

TLP MARKING: TLP:CLEAR

This is somewhat odd as TLS handshakes are typically initiated by the TCP
client, whereas in this case Pygmy Goat is the TCP server but establishes the
TLS handshake as though it was the client; i.e, sending the Client Hello,
followed by the TCP client sending the Server Hello.

TLP MARKING: TLP:CLEAR

C2 Tasking
Regardless of which mechanism was used to establish the TLS connection to
the C2 server, subsequent data sent from the server to Pygmy Goat follows the
same code path.

Data sent over the C2 TLS channel in either direction consists of a command
byte, an identifier byte, a subcommand byte, and a two-byte big-endian
length, followed by an optional LZO1X compressed data section. The identifier
byte is unused for simple request-response commands, and the value sent by
the server is simply echoed back in the response, however for long running
commands it is used to specify which instance of a previous command to
interact with, e.g, to stop a previously started packet capture. The first
command packet received by Pygmy Goat following the TLS handshake is
expected to be another handshake containing a sequence of expected magic
bytes:

All example command packets are with TLS stripped and the LZO1X data
decompressed, to make the data legible. For small packets of data the LZO1X
algorithm increases the length after ‘compression’ due to a header, hence the
length being greater than the length of the uncompressed bytes in some
cases. Unless otherwise stated as ‘LE’ (Little Endian), all numeric values are
transmitted as Big Endian values.

Pygmy Goat Handshake (C2 -> Malware)

0x0000 63 00 01 00 0c 2c 62 45 42 33 3f 3d 6f c....,bEB3?=o

Command (Handshake) Identifier Subcommand (Request)

Compressed Length Magic Bytes

Pygmy Goat Handshake (Malware -> C2)

0x0000 63 00 01 00 00 c....

Command (Handshake) Identifier Subcommand (Response)

Compressed Length

Following the handshake, Pygmy Goat will start processing subsequent
packets as commands.

TLP MARKING: TLP:CLEAR

0x01 DateTime
Pygmy Goat responds with the current date and time, formatted with the ctime
C function.

DateTime request (C2 -> Malware)

0x0000 01 00 01 00 00

Command (DateTime) Identifier Subcommand (Request)

Compressed Length

DateTime response (Malware -> C2)

0x0000
0x0010
0x0020

01 00 06 00 23 54 75 65 20 4d 61 72 20 31 34 20
31 32 3a 33 37 3a 33 33 20 32 30 32 34 20 28 44
41 54 45 29

....#Tue Mar 14
12:37:33 2024 (D
ATE)

Command (DateTime) Identifier Subcommand (Response)

Compressed Length Formatted date time

0x02 Details
Pygmy Goat responds with the victim system details from the uname C function.

Details request (C2 -> Malware)

0x0000 02 00 01 00 00

Command (Details) Identifier Subcommand (Request)

Compressed Length

Details response (Malware -> C2)

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080

02 00 06 00 8d 53 79 73 6e 61 6d 65 3a 20 20 4c
69 6e 75 78 0a 4e 6f 64 65 6e 61 6d 65 3a 20 75
62 75 6e 74 75 0a 52 65 6c 65 61 73 65 3a 20 20
34 2e 31 30 2e 30 2d 32 38 2d 67 65 6e 65 72 69
63 0a 56 65 72 73 69 6f 6e 3a 20 20 23 33 32 7e
31 36 2e 30 34 2e 32 2d 55 62 75 6e 74 75 20 53
4d 50 20 54 68 75 20 4a 75 6c 20 32 30 20 31 30
3a 31 39 3a 31 33 20 55 54 43 20 32 30 31 37 0a
4d 61 63 68 69 6e 65 3a 20 20 69 36 38 36

.....Sysname: L
inux.Nodename: u
buntu.Release:
4.10.0-28-generi
c.Version: #32~
16.04.2-Ubuntu S
MP Thu Jul 20 10
:19:13 UTC 2017.
Machine: i686

Command (Details) Identifier Subcommand (Response)

Compressed Length System Details

TLP MARKING: TLP:CLEAR

0x03 System Shell
Pygmy Goat forks a new /bin/sh process using code copied from The Linux
Programming Interface2, passing data to/from the socket to/from the shell
child process. The identifier byte is used to support opening multiple shells at
once.

Shell start request (C2 -> Malware)

0x0000 03 7b 01 00 08 00 04 00 00 .{.......

Command (System
Shell)

Identifier (123) Subcommand (Start)

Compressed Length Buffer window size (1024, LE)

Shell start response (Malware -> C2)

0x0000 03 7b 02 00 00 .{...

Command (System
Shell)

Identifier Subcommand (Started)

Compressed Length

Shell output (Malware -> C2)

0x0000 03 7b 03 00 06 23 20 .{...#

Command (System Shell) Identifier Subcommand (IO)

Compressed Length Shell output (‘# ’)

Shell input (C2 -> Malware)

0x0000 03 7b 03 00 08 70 77 64 0a .{...pwd.

Command (System
Shell)

Identifier Subcommand (IO)

Compressed Length Shell input (‘pwd\n’)

2 https[:]//man7[.]org/tlpi/code/online/dist/pty/pty_fork.c.html

TLP MARKING: TLP:CLEAR

Shell output (Malware -> C2)

0x0000
0x0010
0x0020

03 7b 03 00 21 70 77 64 0d 0a 2f 68 6f 6d 65 2f
75 73 65 72 2f 6c 69 62 73 6f 70 68 6f 73 0d 0a
23 20

.{...pwd../home/
user/libsophos..

Command (System
Shell)

Identifier Subcommand (IO)

Compressed Length Shell output
(‘pwd\r\n/home/user/libsophos\r\n# ’)

Shell stop request (C2 -> Malware)

0x0000 03 7b 05 00 00 .{...

Command (System
Shell)

Identifier Subcommand (Stop)

Compressed Length

Shell stop response (Malware -> C2)

0x0000 03 7b 06 00 00 .{...

Command (System Shell) Identifier Subcommand (Stopped)

Compressed Length

0x04 CLI Shell
Pygmy Goat forks a new /bin/csh process, and otherwise operates in the same
manner as the System Shell command including the command packets and
control flow, with the sole exception of the Command byte being 0x04 instead
of 0x03; as such, example packets have not been included.

TLP MARKING: TLP:CLEAR

0x05 Crontab
Pygmy Goat forks a new execution of crontab using the statically compiled
embedded BusyBox instance, otherwise operating similarly to the previous two
commands. This provides the actor with an interactive instance of crontab,
enabling them to create scheduled tasks on the victim device to execute
when the actor isn’t actively interacting with the system.

Crontab CLI start request (C2 -> Malware)

0x0000 05 7b 01 00 08 00 04 00 00 00 00 00 00 2d 6c .{...........-l

Command (Crontab CLI) Identifier Subcommand (Start)

Compressed Length Buffer window size
(LE)

Unused

Additional args to crontab (e.g, -l to list tasks, -e to edit
crontab file)

Crontab CLI start response (Malware -> C2)

0x0000 05 7b 02 00 00 .{...

Command (Crontab CLI) Identifier Subcommand (Started)

Compressed Length

Crontab CLI output (Malware -> C2)

0x0000
0x0010
0x0020

05 7b 03 00 21 33 30 20 2a 20 2a 20 2a 20 2a 20
65 63 68 6f 20 70 77 6e 64 20 3e 20 2f 68 6f 6d
65 2f 75 73 65 72 2f 70 77 6e 64 0d 0a

.{..!30 * * * *
echo pwnd > /hom
e/user/pwnd..

Command (Crontab CLI) Identifier Subcommand (IO)

Compressed Length CLI output

Crontab CLI stopped (Malware -> C2)

0x0000 05 7b 06 00 00 .{...

Command (Crontab CLI) Identifier Subcommand (Stopped)

Compressed Length

Note, the ‘Stopped’ message from the malware is sent automatically when the
child crontab process exits. In the above example, the C2 server sent the ‘-l’
argument which causes crontab to list the current cron tasks and then exit;
hence the ‘IO’ subcommand containing the standard output, followed by the
Stopped ‘subcommand’.

TLP MARKING: TLP:CLEAR

0x06 Packet Capture
Pygmy Goat uses the libpcap library to start capturing traffic on the specified
interface according to the specified filter string until a subsequent command
is sent to tell it to stop.

Packet capture start request (C2 -> Malware)

0x0000
0x0010

06 7b 01 00 11 00 05 00 04 65 6e 73 33 33 69 63
6d 70

.{.......ens33ic
mp

Command (Packet
Capture)

Identifier Subcommand (Start)

Compressed Length Interface name length Filter string length

Interface name Filter string

Packet capture start response (Malware -> C2)

0x0000
0x0010

06 7b 02 00 1c d4 c3 b2 a1 02 00 04 00 00 00 00
00 00 00 00 00 00 00 00 00 01 00 00 00

.{...ÔÃ²¡.......

.............

Command (Packet
Capture)

Identifier Subcommand (Started)

Compressed Length Capture metadata, including link type

Packet capture data (Malware -> C2)

0x0000 06 7b 03 00 5d bb 08 10 ... 67 68 69 .{..]»...ghi

Command (Packet
Capture)

Identifier Subcommand (Packet)

Compressed Length Single pcap frame

Packet capture stop request (C2 -> Malware)

0x0000 06 7b 05 00 00 .{...

Command (System
Shell)

Identifier Subcommand (Stop)

Compressed Length

Packet capture response (Malware -> C2)

0x0000 06 7b 06 00 00 .{...

Command (System
Shell)

Identifier Subcommand (Stopped)

Compressed Length

TLP MARKING: TLP:CLEAR

0x07 EarthWorm Reverse Socks Proxy

Pygmy Goat reads a new hostname/IP address and TCP port from the
compressed data, and then calls through to a copied version of the
EarthWorm3 source code, into the create_rssocks_server function4, passing the
address, port, and hardcoded timeout of 10 seconds.

EarthWorm is an open-source network tunnelling tool designed for offensive
capabilities, in particular offering a reverse SOCKS5 proxy server to enable
penetration through firewalls. While EarthWorm isn’t directly malicious, it has
been used by threat actors previously, as noted in reporting by Mandiant5 and
CrowdStrike6. The original developer has since taken down the source code
from their github page, although it remains available in mirrored repositories7.

3 https[:]//rootkiter[.]com/EarthWorm/en/index.html

4 https[:]//github[.]com/anhilo/xiaogongju/blob/master/rssocks_pro.c#L3

5 https[:[//www.mandiant[.]com/resources/blog/pst-want-shell-proxyshell-exploiting-
microsoft-exchange-servers

6 https[:]//www.crowdstrike[.]com/blog/overwatch-insights-reviewing-a-new-intrusion-
targeting-mac-systems/

7 https[:]//github[.]com/anhilo/xiaogongju/

TLP MARKING: TLP:CLEAR

Reverse proxy start request (C2 -> Malware)

0x0000
0x0010
0x0020
0x0030
0x0040
0x0050
0x0060
0x0070
0x0080
0x0090
0x00a0
0x00b0
0x00c0
0x00d0
0x00e0
0x00f0
0x0100

07 7b 01 00 27 65 78 61 6d 70 6c 65 2e 63 6f 6d
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 22 b8

.{...example.com

................

................

................

................

................

................

................

................

................

................

................

................

................

................

................

..... "¸

Command (Proxy) Identifier Subcommand (Start)

Compressed Length EarthWorm server
address (256 bytes

null padded)

EarthWorm server TCP
port (8888)

Reverse proxy start response (Malware -> C2)

0x0000 07 7b 02 00 00 .{...

Command (Proxy) Identifier Subcommand (Started)

Compressed Length

In a forked process, Pygmy Goat then establishes a new TCP connection to the
address and port contained in the start request data.

Whilst the channel used to request that Pygmy Goat create a reverse SOCKS
proxy is TLS-encrypted, the EarthWorm channel itself is not, and as such
subsequent packet examples are raw TCP.

EarthWorm Client Request (Malware -> EarthWorm Server)

0x0000 01 01 00 00 00 00

Type (Handshake) Subtype (Request) Pool Number

TLP MARKING: TLP:CLEAR

EarthWorm Server Response (EarthWorm Server -> Malware)

0x0000 01 02 00 00 00 00

Type (Handshake) Subtype (Response) Pool Number

EarthWorm Assign Pool Number (EarthWorm Server -> Malware)

0x0000 01 03 00 00 04 d2Ò

Type (Handshake) Subtype (Assign Pool
Num)

Pool Number

Pool numbers are used so a single EarthWorm server can distinguish between
multiple clients.

Pygmy Goat then establishes a new TCP connection to the EarthWorm server,
this time using the Pool Number it’s just been assigned, to request a remote
tunnel.

EarthWorm Request Remote Tunnel (Malware -> EarthWorm Server)

0x0000 01 04 00 00 04 d2Ò

Type (Handshake) Subtype (Tunnel
Request)

Pool Number

EarthWorm Remote Tunnel Created (EarthWorm Server -> Malware)

0x0000 01 05 00 00 04 d2Ò

Type (Handshake) Subtype (Tunnel
Response)

Pool Number

At this point the EarthWorm server creates a new locally listening port, which a
SOCKS5 client can connect into. All raw data sent through the locally listening
port is tunnelled directly through to Pygmy Goat, which behaves as a SOCKS5
server, enabling the actor to send SOCKS traffic from their local end, through
the firewall device and beyond.

Of note with EarthWorm, regardless of which authentication methods the
SOCKS5 client states it supports, the EarthWorm SOCKS5 server running in
Pygmy Goat will always choose ‘No Authentication’. EarthWorm also only

TLP MARKING: TLP:CLEAR

supports the remote address being specified as IPv4, and finally, after
establishing the remote connection to the IPv4 address and port specified by
the SOCKS5 client, the server will respond stating that its local bind address
and port is \x41\x41\x41\x41 and \x41\x41:

Proxied Curl Request, Client Greeting (Curl -> EW Server -> Malware)

0x0000 05 02 00 02

SOCKS Version Num Auth No auth & User/Pass

Proxied Curl Request, Server Choice (Malware -> EW Server -> Curl)

0x0000 05 00 ..

SOCKS Version Auth choice (No auth)

Proxied Curl Request, Client Connection Request (Curl -> EW Server ->
Malware)

0x0000 05 01 00 01 c0 a8 06 01 1a 0aÀ¨....

SOCKS Version Establish TCP Connect Reserved

Address Type (IPv4) Packed IPv4 Address TCP port

Proxied Curl Request, Server Response (Malware -> EW Server -> Curl)

0x0000 05 00 00 01 41 41 41 41 41 41AAAAAA

SOCKS Version Request Granted Reserved

Address Type (IPv4) Packed IPv4 Bind
Address

TCP bind port

TLP MARKING: TLP:CLEAR

Example Network Diagram
In the below example, the actor uses the ICMP wakeup method to establish a
TLS connection to the IP and port inside the encrypted ICMP packet data.
Pygmy Goat establishes a TCP & TLS connection to the C2 server, verifying the
C2 server’s TLS certificate against the embedded CA cert. The C2 server
performs the Pygmy Goat handshake, followed by a task: to establish a reverse
SOCKS5 EarthWorm connection with the IP and port inside the task data. After
establishing the reverse tunnel, a SOCKS5 client can connect into the
EarthWorm server on a newly opened port to send tunnelled data which will
ultimately come out of the victim’s network interface.

EarthWorm assign Pool Number

Victim Wakeup Server C2 Server EarthWorm Server
SOCKS5 Client

TLP MARKING: TLP:CLEAR

Conclusion

While not containing any novel techniques, Pygmy Goat is quite sophisticated
in how it enables the actor to interact with it on demand, while blending in with
normal network traffic. The code itself is clean, with short, well-structured
functions aiding future extensibility, and errors are checked throughout,
suggesting it was written by a competent developer or developers.

Although Pygmy Goat has so far only been seen on Sophos XG Firewalls,
design choices suggest that it could be intended for use on an array of Linux
devices rather than specifically targeted. The malware has multiple methods
of comms wake-up, as well as two separate remote shells, /bin/sh and
/bin/csh, which would likely be considered unnecessary effort if the malware
had been developed for a specific device. Pygmy Goat does not rely on any
device-specific external libraries and will run on a base Ubuntu distribution.

In particular, the embedded Root CA Certificate, which claims to have been
issued by ‘FortiGate, Fortinet Ltd.’, as well as one of the IPC Unix sockets having
the filename ‘.fgmon_cli.ipc’, suggests that Pygmy Goat may have initially
been intended to execute on FortiGate devices. Recent reporting from
Mandiant shows attacks on FortiGate devices, with CASTLETAP having similar
TTPs to Pygmy Goat, such as an encrypted ICMP packet containing C2
information being used to establish a reverse SSL connection8.

8 https[:]//www.mandiant[.]com/resources/blog/fortinet-malware-ecosystem

TLP MARKING: TLP:CLEAR

Detection

Indicators of compromise
Type Description Values
Path Copied malware path /lib/libsophos.so

Path IPC Unix server socket /tmp/.sshd.ipc

Path IPC Unix client socket /tmp/.fgmon_cli.ipc

Path IPC Unix server socket from older sample /tmp/.goat.ipc

Path Single instance pid file /var/run/sshdd.pid

Path Single instance pid file from older sample /var/run/goat.pid

Rules and signatures
Description Pygmy Goat AES key built on the stack or in data

Precision No false positives in VirusTotal retro hunt over the previous 12 months

Rule type YARA

rule pygmy_goat_aes_key

{

 meta:

 author = "NCSC"

 description = "Pygmy Goat AES key built on the stack or in data"

 date = "2024-10-22"

 hash1 = "71f70d61af00542b2e9ad64abd2dda7e437536ff"

 strings:

 $dword_1 = { 59 4b 6e 77 }

 $dword_2 = { 51 6a 6d 41 }

 $dword_3 = { 54 62 41 6e }

 $dword_4 = { 52 6f 5a 6d }

 $dword_5 = { 30 66 47 37 }

 $dword_6 = { 55 5a 57 62 }

 $dword_7 = { 32 59 55 78 }

 $dword_8 = { 55 51 50 77 }

 condition:

 (uint32(0) == 0x464c457f) and all of them

}

TLP MARKING: TLP:CLEAR

Description Pygmy Goat magic byte sequences used in C2 comms

Precision No false positives in VirusTotal retro hunt over the previous 12 months

Rule type YARA

rule pygmy_goat_magic_strings

{

 meta:

 author = "NCSC"

 description = "Pygmy Goat magic byte sequences used in C2 comms"

 date = "2024-10-22"

 hash1 = "71f70d61af00542b2e9ad64abd2dda7e437536ff"

 strings:

 $c2_magic_handshake = ",bEB3?=o"

 $fake_ssh_banner = "SSH-2.0-D8pjE"

 $fake_ed25519_key = { 29 cc f0 cc 16 c5 46 6e 52 19 82 8e 86

65 42 8c 1f 1a d4 c3 a5 b1 cb fc c0 26 6c 31 3c 5c 90 3a 24 7d e4 d3 57

6d da 8e cb f4 66 d1 cb 81 4f 63 fd 4a fa 06 e4 7e 4c a0 95 91 bd cb 97

a4 b3 0f }

 condition:

 (uint32(0) == 0x464c457f) and any of them

}

TLP MARKING: TLP:CLEAR

Description EarthWorm pool num generation x86 assembly

Precision
Signature is looking for use of EarthWorm in an x86 ELF binary, which
may include benign uses

Rule type YARA

rule earthworm_id_generation_x86

{

 meta:

 author = "NCSC"

 description = "EarthWorm pool num generation x86 assembly"

 date = "2024-10-22"

 hash1 = "71f70d61af00542b2e9ad64abd2dda7e437536ff"

 strings:

 $chartoi = {

 8b 45 ?? // MOV EAX,dword ptr [EBP + ??]

 c1 e0 07 // SHL EAX,0x7

 89 c1 // MOV ECX,EAX

 8b 55 ?? // MOV EDX,dword ptr [EBP + ??]

 8b 45 ?? // MOV EAX,dword ptr [EBP + ??]

 01 d0 // ADD EAX,EDX

 0f b6 00 // MOVZX EAX,byte ptr [EAX]

 0f be c0 // MOVSX EAX,AL

 01 c8 // ADD EAX,ECX

 89 45 ?? // MOV dword ptr [EBP + ??],EAX

 83 6d ?? 01 // SUB dword ptr [EBP + ??],0x1

 }

 condition:

 (uint32(0) == 0x464c457f) and all of them

}

Description Pygmy Goat Fake SSH handshake

Precision Unknown, presumed high due to fake SSH protocol version

Rule type Snort v2

alert tcp any 22 -> any any (msg: "Pygmy Goat Fake SSH handshake";

content: "SSH-2.0-D8pjE"; offset: 0; depth: 13; classtype:trojan-

activity;)

TLP MARKING: TLP:CLEAR

Description Pygmy Goat Fake SSH ed25519 key

Precision Unknown, presumed high due to content length

Rule type Snort v2

alert tcp any 22 -> any any (msg: "Pygmy Goat Fake SSH ed25519

key"; content:

"|29ccf0cc16c5466e5219828e8665428c1f1ad4c3a5b1cbfcc0266c313c5c903a

247de4d3576dda8ecbf466d1cb814f63fd4afa06e47e4ca09591bdcb97a4b30f|"

; offset: 120; depth: 64; classtype:trojan-activity;)

TLP MARKING: TLP:CLEAR

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a
globally accessible knowledge base of adversary tactics and techniques based
on real-world observations.

Tactic ID Technique Procedure

Persistence T1574.006 Dynamic Linker
Hijacking

Pygmy Goat uses the LD_PRELOAD
environment variable to inject into sshd

Execution T1059.004 Command and
Scripting
Interpreter: Unix
Shell

Pygmy Goat can create a /bin/sh or
/bin/csh remote shell

T1053.003 Scheduled
Task/Job: Cron

Pygmy Goat can create arbitrary cron
tasks using crontab

T1559 Inter-Process
Communication

Pygmy Goat uses Unix sockets for inter-
process communication between parent
and forked child processes

Discovery T1040 Network Sniffing Pygmy Goat can use libpcap to sniff
network traffic according to a BPF filter
and exfiltrate it to the C2

Command
and
Control

T1205.001 Traffic Signaling:
Port Knocking

Pygmy Goat listens on an ICMP raw socket
for encrypted packets containing magic
bytes and the C2 address to connect back
to

T1001.003 Data Obfuscation:
Protocol
Impersonation

Pygmy Goat responds to an SSH
connection that sends magic bytes with a
fake SSH handshake

T1573.002 Encrypted
Channel:
Asymmetric
Cryptography

Pygmy Goat encrypts C2 communications
with TLS

T1572 Protocol Tunneling Pygmy Goat can create a reverse SOCKS5
proxy server to tunnel traffic through it

Collection T1560.002 Archive Collected
Data: Archive via
Library

Pygmy Goat compresses its C2
communications with LZO1X

Exfiltration T1041 Exfiltration Over
C2 Channel

Pygmy Goat exfiltrates its result data over
its C2 channel

https://attack.mitre.org/techniques/T1574/006
https://attack.mitre.org/techniques/T1059/004
https://attack.mitre.org/techniques/T1053/003
https://attack.mitre.org/techniques/T1559/
https://attack.mitre.org/techniques/T1040
https://attack.mitre.org/techniques/T1205/001
https://attack.mitre.org/techniques/T1001/003
https://attack.mitre.org/techniques/T1573/002
https://attack.mitre.org/techniques/T1572
https://attack.mitre.org/techniques/T1560/002/
https://attack.mitre.org/techniques/T1041

TLP MARKING: TLP:CLEAR

Appendix

TLS Root CA Certificate
-----BEGIN CERTIFICATE-----

MIIC3zCCAccCFB8e5bk6nwcaR66tdgFt7kh7iw19MA0GCSqGSIb3DQEBCwUAMCwx

FjAUBgNVBAoMDUZvcnRpbmV0IEx0ZC4xEjAQBgNVBAMMCUZvcnRpR2F0ZTAeFw0y

MTA4MzEwMTU0NDJaFw0zMTA4MjkwMTU0NDJaMCwxFjAUBgNVBAoMDUZvcnRpbmV0

IEx0ZC4xEjAQBgNVBAMMCUZvcnRpR2F0ZTCCASIwDQYJKoZIhvcNAQEBBQADggEP

ADCCAQoCggEBAO0UTvHfYvBeIKqKYWV5xfoJW4hsHZbMHSWefuUiYSLDliBDWV8e

4hBdi6krF8YGGRkKlHPZcfTHzJQmYwBG2mAjEWiIQm3Z0aD4wJjnF/B0VAYDTG29

Vqj+PFU5UsckGeWqTomKOFwutazXiUWicGjzTJErhVj26AgXUPiKO5VHBdHR/xqW

xJ5ed4L0OOW4c/WYQjUReeiKw2iP3bAtrglXWInJexiWzA/FzsRTbwCUexGmXhwG

65QsW5t4beDCBHMJN/uP6Q7kIqtDe3/JL8osT0UmGTEcQBx1mkc7Nb6dMgabHPoM

NWbGLlxRKxb9+H0XGq+effuFMr9CUXb60PcCAwEAATANBgkqhkiG9w0BAQsFAAOC

AQEAHiZ0DxXlTEykWJxKDcKXhv02TO4C6jhDotr1xYiXha9s+o83h/Q9SFnCL7mP

1KKB/hRA6/CwXH/P9YUR0OnbPEsUJoQp3jbcXV5m/Xen/Zss+AIwCtLVy20ctPCn

svXbPp0lEf69fgByXmL1gB+03dk4QTsy96yrfIPCIXMn7Q3A5LZ2AMBSg/+YJ4xP

Il+oGhm90WUbr4PgMS+DqTHuf+ghxxHTgbRtLdCvGLA8fu6CcM8rwGae48aE/+gU

MaavuO9VUiW8eGdouyVZvGhutVpWWYABrslchLpZEF48pEFMk9ChLU9/17Qd1zgQ

Ug/Gkjn036B8ZfA3xdCpTd7ldA==

-----END CERTIFICATE-----

TLP MARKING: TLP:CLEAR

X509 Certificate:

Version: 1

Serial Number: 1f1ee5b93a9f071a47aead76016dee487b8b0d7d

Signature Algorithm:

 Algorithm ObjectId: 1.2.840.113549.1.1.11 sha256RSA

 Algorithm Parameters:

 05 00

Issuer:

 CN=FortiGate

 O=Fortinet Ltd.

 Name Hash(sha1): b87a11fc647eed1aed3543237cb1540d99ead580

 Name Hash(md5): d45eadb1d50562927512b7f545a02b65

 NotBefore: 8/31/2021 1:54 AM

 NotAfter: 8/29/2031 1:54 AM

Subject:

 CN=FortiGate

 O=Fortinet Ltd.

 Name Hash(sha1): b87a11fc647eed1aed3543237cb1540d99ead580

 Name Hash(md5): d45eadb1d50562927512b7f545a02b65

Public Key Algorithm:

 Algorithm ObjectId: 1.2.840.113549.1.1.1 RSA (RSA_SIGN)

 Algorithm Parameters:

 05 00

Public Key Length: 2048 bits

Public Key: UnusedBits = 0

 0000 30 82 01 0a 02 82 01 01 00 ed 14 4e f1 df 62 f0

 0010 5e 20 aa 8a 61 65 79 c5 fa 09 5b 88 6c 1d 96 cc

 0020 1d 25 9e 7e e5 22 61 22 c3 96 20 43 59 5f 1e e2

 0030 10 5d 8b a9 2b 17 c6 06 19 19 0a 94 73 d9 71 f4

 0040 c7 cc 94 26 63 00 46 da 60 23 11 68 88 42 6d d9

 0050 d1 a0 f8 c0 98 e7 17 f0 74 54 06 03 4c 6d bd 56

 0060 a8 fe 3c 55 39 52 c7 24 19 e5 aa 4e 89 8a 38 5c

 0070 2e b5 ac d7 89 45 a2 70 68 f3 4c 91 2b 85 58 f6

 0080 e8 08 17 50 f8 8a 3b 95 47 05 d1 d1 ff 1a 96 c4

 0090 9e 5e 77 82 f4 38 e5 b8 73 f5 98 42 35 11 79 e8

 00a0 8a c3 68 8f dd b0 2d ae 09 57 58 89 c9 7b 18 96

 00b0 cc 0f c5 ce c4 53 6f 00 94 7b 11 a6 5e 1c 06 eb

 00c0 94 2c 5b 9b 78 6d e0 c2 04 73 09 37 fb 8f e9 0e

 00d0 e4 22 ab 43 7b 7f c9 2f ca 2c 4f 45 26 19 31 1c

 00e0 40 1c 75 9a 47 3b 35 be 9d 32 06 9b 1c fa 0c 35

 00f0 66 c6 2e 5c 51 2b 16 fd f8 7d 17 1a af 9e 7d fb

 0100 85 32 bf 42 51 76 fa d0 f7 02 03 01 00 01

Certificate Extensions: 0

Signature Algorithm:

 Algorithm ObjectId: 1.2.840.113549.1.1.11 sha256RSA

 Algorithm Parameters:

 05 00

Signature: UnusedBits=0

 0000 74 e5 de 4d a9 d0 c5 37 f0 65 7c a0 df f4 39 92

 0010 c6 0f 52 10 38 d7 1d b4 d7 7f 4f 2d a1 d0 93 4c

 0020 41 a4 3c 5e 10 59 ba 84 5c c9 ae 01 80 59 56 5a

 0030 b5 6e 68 bc 59 25 bb 68 67 78 bc 25 52 55 ef b8

 0040 af a6 31 14 e8 ff 84 c6 e3 9e 66 c0 2b cf 70 82

 0050 ee 7e 3c b0 18 af d0 2d 6d b4 81 d3 11 c7 21 e8

 0060 7f ee 31 a9 83 2f 31 e0 83 af 1b 65 d1 bd 19 1a

 0070 a8 5f 22 4f 8c 27 98 ff 83 52 c0 00 76 b6 e4 c0

 0080 0d ed 27 73 21 c2 83 7c ab ac f7 32 3b 41 38 d9

TLP MARKING: TLP:CLEAR

 0090 dd b4 1f 80 f5 62 5e 72 00 7e bd fe 11 25 9d 3e

 00a0 db f5 b2 a7 f0 b4 1c 6d cb d5 d2 0a 30 02 f8 2c

 00b0 9b fd a7 77 fd 66 5e 5d dc 36 de 29 84 26 14 4b

 00c0 3c db e9 d0 11 85 f5 cf 7f 5c b0 f0 eb 40 14 fe

 00d0 81 a2 d4 8f b9 2f c2 59 48 3d f4 87 37 8f fa 6c

 00e0 af 85 97 88 c5 f5 da a2 43 38 ea 02 ee 4c 36 fd

 00f0 86 97 c2 0d 4a 9c 58 a4 4c 4c e5 15 0f 74 26 1e

Signature matches Public Key

Root Certificate: Subject matches Issuer

Key Id Hash(rfc-sha1): 241a37a7ac3e26d8d703a8058ffe100dd1150193

Key Id Hash(sha1): d05ec61f560ec38990760bbb71339e09ebd3a4cc

Key Id Hash(bcrypt-sha1): 1febcf83a6f6e2598a5288a0e57742d1fc6e7620

Key Id Hash(bcrypt-sha256):

efbb9150e66eff1492404ca6bfb219dd656c640814e27cfb3e757ff94fe6aa5a

Key Id Hash(md5): eae7cc16a30ed5a98916f9f381a5bcb2

Key Id Hash(sha256):

8049bd8e86a6b5f382639b0739c78c5fd55780c72d3b5c9a6084e22981f9dc51

Key Id Hash(pin-sha256): frcO5XKYZ/rwLDKF6EeMNz4MYTQrkNTwd1VPrxMDwSo=

Key Id Hash(pin-sha256-hex):

7eb70ee5729867faf02c3285e8478c373e0c61342b90d4f077554faf1303c12a

Cert Hash(md5): e1b9842e7e0b9cf722bcc7d08c768486

Cert Hash(sha1): 8d453ff52947af1842a0231d74ffbb6faacf6167

Cert Hash(sha256):

f85280bd427aa2e9d714ea3bc11febf5a436cfc04fcbbe708c2592a88b6000a3

Signature Hash:

ef0ae22901ab9ab07f3b6e1f80ee41cd21deee957e81d7a48fac2517ae5ce87e

TLP MARKING: TLP:CLEAR

Disclaimer

This report draws on information derived from NCSC and industry
sources. Any NCSC findings and recommendations made have not been
provided with the intention of avoiding all risks and following the
recommendations will not remove all such risk. Ownership of information
risks remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000
(FOIA) and may be exempt under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

