
 

 

 

   

Malware Analysis Report 

Hexed Noodle 

26 July 2021 

© Crown Copyright 2021 

Version 1.0 

 

 



 

 

Hexed Noodle 
Android variant of AppleSeed backdoor 
 

Executive summary  

• Behaviour and network traffic is consistent with the Windows AppleSeed backdoor 

• Masquerades as a (South) Korean Internet Security Agency (KISA) mobile security app 

• Performs execution of shell commands as well as both tasked and automated collection of 
filesystem contents and SMS messages 
 

Introduction  

This report describes an Android variant of the Windows AppleSeed backdoor used in Operation 
Cobra Venom in 2019i, which similarly masqueraded as computer security software.   

No information is available detailing how this malware is delivered, although by masquerading as a 
KISA app it appears to be targeting security-conscious South Korean users, albeit with English text. 

The Android variant creates three primary tasks: a command beacon task which fetches tasking, an 
SMS monitor which collects incoming SMS messages and a file monitor, which collects files modified 
within the last week if they have a targeted extension. 

 
 

Malware details 

Metadata 

Filename KisaAndroidSecurity.apk 

Description Android backdoor masquerading as a security app 

Size 1.33 MB 

MD5 4626ed60dfc8deaf75477bc06bd39be7 

SHA-1 a9ff1ebb548f5bba600d38e709ff331749fa9971 

SHA-256 2365a48f7d6cf6dcc83195f06ea11b93c955c3a491c60b50ba42788917ba22e2 

Package com.kisa.mobile_security 

 

  



 

 

Filename Kisa Vaccine.apk 

Description Android backdoor masquerading as a security app (variant) 

Size 1.09 MB 

MD5 c2a7b3722c3517b14986092fd61b79e6 

SHA-1 d5af22de750d7e3fc91dc154163019b7a245651b 

SHA-256 98909e68fe603a86de5488b8f8860a33dafdace03eebf56f9d680a84c2b66521 

Package com.kisa.mobile_security 

 

 
MITRE ATT&CK® 

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible 
knowledge base of adversary tactics and techniques based on real-world observations. 

Tactic ID Technique Procedure 
Initial Access 
(mobile) 

T1444 Masquerade as 
Legitimate 
Application 

Hexed Noodle masquerades as a KISA 
mobile security app 

Reconnaissance T1592.001 Gather Victim Host 
Information 

Hexed Noodle beacons contain device 
hardware information and phone 
number 

Execution T1059.004 Unix Shell Hexed Noodle system commands are 
executed by passing them to ‘sh -c’ 

T1204.002 User Execution The user is required to install the Hexed 
Noodle APK, accept permissions and 
launch the app 

Persistence 
(mobile) 
 

T1402 Broadcast Receivers Hexed Noodle subscribes to 
BOOT_COMPLETED, 
MY_PACKAGE_REPLACED, 
SMS_RECEIVED and 
PACKAGE_INSTALL broadcasts 

T1547 Boot Autostart The Hexed Noodle app starts on receipt 
of the BOOT_COMPLETED notification 

Defence Evasion 
(mobile) 

T1406 Obfuscated Files or 
Information 

Hexed Noodle configuration is stored in 
the app as hex encoded strings 
containing a 16 byte XOR-key prefix – 
in common with other AppleSeed 
variants. 

Collection T1560.002 Archive Collected 
Data Via Library 

Hexed Noodle data is Zip compressed 
before encryption using standard 
libraries 

T1005 Data from Local 
System 

Hexed Noodle collects SMS messages 
and certain filesystem documents 

T1119 Automated Collection Hexed Noodle regularly scans file and 
SMS directories for changes to trigger 
exfiltration 

Collection 
(mobile) 

T1412 Capture SMS 
Messages 

Hexed Noodle collects both stored and 
incoming SMS messages, possibly 
enabling the bypass of SMS-based two-
factor authentication 

Discovery 
(mobile) 

T1420 File and Directory 
Discovery 

Hexed Noodle contains a command to 
list filesystem contents 

Command and 
Control 

T1071.001 Web Protocols Hexed Noodle uses HTTP requests for 
tasking and exfiltration  

https://attack.mitre.org/techniques/T1444/
https://attack.mitre.org/techniques/T1592/001/
https://attack.mitre.org/techniques/T1059/004/
https://attack.mitre.org/techniques/T1204/002/
https://attack.mitre.org/techniques/T1402/
https://attack.mitre.org/techniques/T1547/
https://attack.mitre.org/techniques/T1406/
https://attack.mitre.org/techniques/T1560/002/
https://attack.mitre.org/techniques/T1005/
https://attack.mitre.org/techniques/T1119/
https://attack.mitre.org/techniques/T1412/
https://attack.mitre.org/techniques/T1420/
https://attack.mitre.org/techniques/T1071/001/


 

 

Exfiltration 
 

T1030 Data Transfer Size 
Limits 

Hexed Noodle uploads files in chunks 
of at most 10MB 

T1041 Exfiltration over C2 
Channel 

Hexed Noodle exfiltration and tasking 
are HTTP POST requests to the same 
server with different parameters 

Exfiltration 
(mobile) 

T1532 Data Encrypted Hexed Noodle exfiltrated data is 
encrypted, prepended with the 16 byte 
XOR key and Hex encoded 

T1437 Standard Application 
Layer Protocol 

Hexed Noodle exfiltrates data using 
HTTP POST requests 

Impact (mobile) T1582 SMS Control Hexed Noodle enables the operator to 
send SMS messages from the victim 
device 

 

Functionality  

Installation 

The malicious app will request the following permissions. Permissions highlighted in red are 
considered ‘dangerous’ by Android and the user must explicitly add to an allow-list on installation.  

android.permission Value Usage 

FOREGROUND_SERVICE Allows the app to run as a service, remaining active while 
other apps are in the foreground 

INTERNET Enables web-based communication with the C2 

RECEIVE_BOOT_COMPLETED Causes the malware to start on device startup 

REQUEST_INSTALL_PACKAGES Allows the malware to initiate an update prompt 

READ_EXTERNAL_STORAGE Allows filesystem enumeration and collection 

READ_PHONE_STATE Allows reading the device phone number 

READ_SMS Allows SMS collection 

RECEIVE_SMS Triggers on-demand SMS harvesting 

SEND_SMS Used by the SMS sending feature 

WRITE_EXTERNAL_STORAGE Used to store data for exfiltration 

Table 1: Required permissions 

Once activated by the user for the first time, a dialog is displayed stating that no threats have been 
found.

 

  

https://attack.mitre.org/techniques/T1030/
https://attack.mitre.org/techniques/T1041/
https://attack.mitre.org/techniques/T1532/
https://attack.mitre.org/techniques/T1437/
https://attack.mitre.org/techniques/T1582/


 

 

Command and control 

In addition to periodic beaconing as described in this report under ‘Communications (Beacons)’,  the 
malware sends a separate HTTP POST request every 60 seconds to retrieve tasking and 
acknowledges the successful receipt of a task with a tasking acknowledgement command. An 
example tasking request is shown in this report under ‘Communications (Tasking)’. 

 

Task Number Task 

1 Update app – prompting the user to initiate the update process 

2 Retrieve a filesystem listing 

3 Fetch specified files 

4 Execute shell command 

5 Retrieve a list of SMS messages 

6 Purge the applications data files 

7 Purge the applications cache files 

8 Send a text message 

Table 2: Valid task numbers 

 

 

Automated exfiltration  

Filesystem 

Every five minutes the malware scans the /mnt/sdcard partition (which is the primary user storage 

area on Android) for files which have been modified within the last week. 

If a modified file ends with an image extension (.jpg, .jpeg, .png, .bmp) or document extension (.pdf, 
.hwp [Hangul Word Processor], .doc, .docx, .ppt, .pptx, .xls, .xlsx, .txt), it will be uploaded, as 
described in this report under ‘Communications (Exfiltration)’. 

Uploads are recorded locally to avoid duplication by storing a hash of the filename and modification 
time in flist.ldb. 

SMS 

The SMS monitor runs every minute and whenever an SMS is received. It works in the same way as 
the file monitor, uploading messages from inbox and sent folders if their prior exfiltration has not 

been recorded in slist.ldb.  

 

 
  



 

 

Communications 

Request format 

The Android version shares a HTTP POST URI scheme with some Windows AppleSeed variants - 
using a command ID parameter (m) and two sub-parameters: p1 (a victim ID taken from the Android 
Settings.Secure.ANDROID_ID value) and p2 (command argument). 

 

Example request URI 

http://download.riseknite[.]life/index.php?m=b&p1=ed0f910544fa0a9e&p2=abcd 

Request type Device Android ID Command-specific argument 

 

Command ID (m) Purpose 

a Device information beacon 

b Encrypted result file (either in response to a task or sent by the file/SMS 
monitor) 

c Tasking request 

d Tasking acknowledgement 

Table 3: Valid command ID parameters 

 

  



 

 

Beacons 

Hexed Noodle transmits beacons containing device information every 60 seconds, with a command 
code (‘m’ as described in this report under ‘Communications (Request format)’) value of ‘a’. Any 

responses to these beacons from the C2 server are ignored. 

Example Beacon (Generated by an emulator with no phone number) 

http://download.riseknite[.]life/index.php?m=a&p1=ed0f910544fa0a9e&p2=Standard+PC+
(i440FX+++PIIX,+1996)+api27+v1.0.2+() 

Device Model Android SDK Version Malware Version 
 

Device Phone Number 

 

Note that any network signatures written for this request should expect a phone number at the end. 

The ‘Malware Version’ string is 1.0.1 for Kisa Vaccine.apk and 1.0.2 for 

KisaAndroidSecurity.apk. 

 

Example  Meaning 

() The device has no phone number assigned 

(###) The app did not have any of READ_SMS, 
READ_PHONE_NUMBERS or 
READ_PHONE_STATE permissions 

(1234567890) The MSISDN (phone number) of the device 
returned by the Android TelephonyManager 
getLine1Number() API 

Table 4: Device phone number formats 

  



 

 

Exfiltration 

Files and SMS messages that have been selected for exfiltration, as described in this report under 
‘Functionality (Automated exfiltration)’, are uploaded to the C2 server via messages with a command 
code (‘m’) of ‘b’. 

 

Example exfiltration request URI 

http://download.riseknite[.]life/index.php?m=b&p1=ed0f910544fa0a9e&p2=a 

File origin 

 

Origin Field (p2) File Contents 

a File system listing or retrieved file 

b Command shell response data 

c Exfiltrated SMS messages 

Table 5: Valid file origin parameters 

 

Uploaded files consist of a dummy PDF header, a 16-byte XOR key and chunks of encrypted data. 
Uploads are performed in chunks of at most 10,485,760 bytes, which is a common size limit for many 
web servers.  

 

Exfiltrated file POST request headers and data format 

Content-Type: multipart/form-data; boundary=$$$$$$$$$$$$$$$$ 
--$$$$$$$$$$$$$$$$ 
Content-Disposition: form-data; name=”binary”; filename=”2021-05-01_12-15-30-012-000001” 
Content-Type: application/octet-stream 
 
%PDF-1.7..4 0 objKKKKKKKKKKKKKKKKCCCCCCCCCCCCCCCCCCC… 
--$$$$$$$$$$$$$$$$-- 

Time Optional File 
chunk ID 

Hardcoded 
Header String 

Random 16 byte XOR Key Ciphertext of ZIP 
compressed data 

 

 

  

Note on date formats: While the filename string generated in the POST form data is in US 
time format, the times/dates in the actual exfiltrated file/SMS data are generated in Seoul 
time. 



 

 

 

 

Tasking 

Tasking messages, as described in this report under ‘Functionality (Command and control)’, are sent 
to the C2 server with a command code (‘m’) of ‘c’. Received tasking is then acknowledged by sending 

a message to the C2 with a command code (‘m’) of ‘d’. 

 

Example tasking POST request and tasking acknowledgement 

http://download.riseknite[.]life/index.php?m=c&p1=ed0f910544fa0a9e 

http://download.riseknite[.]life/index.php?m=d&p1=ed0f910544fa0a9e 

Request type Device Android ID  

POST response format, with a 2 parameter command 

[Command ID][Parameter Count][Parameter 1 Size][Parameter 1 Bytes][Parameter 2 
Size][Parameter 2 Bytes] 

 

The response parameter count and sizes are 4-byte integers, with the number and format dependant 
on the specific command. The commands are not encrypted. 

 

Mitigation opportunities 

Hexed Noodle uses the same predictable URI formats over HTTP as the Windows version, so a 
network defender has ample opportunity to detect and block this malware using standard AppleSeed 
network signatures. 

However, the presentation of the app, which is likely targeted at the personal devices of end users, 
suggests that the malware is intended to operate in environments where this scrutiny is absent.  

 

Conclusion 

The Hexed Noodle variant of AppleSeed is an unsophisticated backdoor which demonstrates no 
significant TTP advances from known Windows versions. The NCSC is aware of one other Android 
sample as of July 2021. 

  



 

 

Detection 

Indicators of compromise 

Type Description Values 

Domain C2 domain download.riseknite[.]life 

Domain C2 domain app.at-me[.]ml 

Filename A list of MD5 hashes of file filenames/dates 
used for avoiding duplicate file exfiltration  

flist.ldb 

Filename A list of MD5 hashes of SMS 
time/folder/addresses used for avoiding 
duplicate SMS exfiltration  

slist.ldb  

 
 

Rules and signatures 

Description Plaintext strings from a Hexed Noodle Android variant ‘classes.dex’ file 

Precision 
Strong – though this will also hit on Windows AppleSeed binaries. An MZ 
header exclusion can be added if this is undesirable. 

Rule type YARA 

rule dexstrings_plaincomms_obfushex_a9ff1e { 

    meta:  

        author = "NCSC" 

        description = "Plaintext strings from a Hexed Noodle 'classes.dex' 
file"  

        hash = "a9ff1ebb548f5bba600d38e709ff331749fa9971" 

 

    strings: 

        $exfil1 = "multipart/form-data; boundary=$$$$$$$$$$$$$$$$" 

        $exfil2 = "Content-Disposition: form-data; name=\"binary\"; 

filename=\"" 

        $reqFormatAParam1 = /\?m=[a-d]&p1=/ 

        $reqFormatAParam2 = /&p2=[a-c]/ 

        $smsdb = "slist.ldb" //"flist.ldb" (name of the files db) is 

obfuscated but the developers have forgotten to wrap this sms database 

filename 

 

 

    condition: 

        3 of them 

} 

  



 

 

Appendix 

Obfuscated string extraction script 

import binascii, re, sys, os, zipfile 

 

def deobfuscate(path): 

 

    results = [] 

    filedata = open(path, 'rb').read() 

    if filedata[:2] == b'PK': 

        try: 

            filedata = zipfile.ZipFile(sys.argv[1]).read("classes.dex") 

        except Exception as e: 

            print(f"Failed to read classes.dex from {path}: {e}") 

            return results 

 

    if filedata[:3] != b"dex": 

        print("Invalid .dex file provided") 

        return results 

 

    # with a 16 byte key encoded as a 32 byte hex string, 

    # the minimum candidate size is 34 bytes 

    candidates = re.finditer(b"[0-9a-f]{34,512}", filedata) 

 

    for match in candidates: 

        original = match.group() 

        source = match.start() 

        if len(original) % 2 != 0: 

            original = original[1:] 

            source += 1 

 

        stringbinary = binascii.unhexlify(original) 

        key, ct = stringbinary[:16], stringbinary[16:] 

 

        plaintext = '' 

        lastCT = 0 

        for idx, ctbyte in enumerate(ct): 

            plaintext += chr(lastCT ^ ctbyte ^ key[idx % 16]) 

            lastCT = ctbyte 

 

        if plaintext.isprintable(): 

            results.append({"string":plaintext, "original":original, "offset

":source}) 

    return results 



 

 

 

This Python 3 script takes a path to a suspected Hexed Noodle APK or classes.dex file as the 
argument and outputs deobfuscated configuration strings. 

 

 

Disclaimer 

This report draws on information derived from NCSC and industry sources. Any NCSC findings 
and recommendations made have not been provided with the intention of avoiding all risks and 
following the recommendations will not remove all such risk. Ownership of information risks 
remains with the relevant system owner at all times. 

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt 
under other UK information legislation.  

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.  

All material is UK Crown Copyright © 

 
 

 

i https://www.mcafee.com/enterprise/en-us/threat-center/threat-landscape-dashboard/campaigns-
details.operation-cobra-venom.html 

 

if __name__ == "__main__": 

    if len(sys.argv) != 2 or not os.path.exists(sys.argv[1]): 

        print("Usage: stringdecode.py <path to HEXED NOODLE apk or classes.d

ex>") 

    else: 

        results = deobfuscate(sys.argv[1]) 

        print('\n'.join(sorted([result['string'] for result in results]))) 
 

mailto:ncscinfoleg@ncsc.gov.uk
https://www.mcafee.com/enterprise/en-us/threat-center/threat-landscape-dashboard/campaigns-details.operation-cobra-venom.html
https://www.mcafee.com/enterprise/en-us/threat-center/threat-landscape-dashboard/campaigns-details.operation-cobra-venom.html

