

Malware Analysis Report

Cheeky Chipmunk

24th January 2022

© Crown Copyright 2022

Version 1.0

Cheeky Chipmunk
Windows malware implemented as an RPC server

Executive summary

• Cheeky Chipmunk is a malicious Microsoft Windows Remote Procedure Call (RPC) server,
installed via a PowerShell loader.

• Command and control (C2) is performed using a separate standalone executable RPC client.

• The loader implements an Antimalware Scanning Interface (AMSI) avoidance technique and
is protected using layered obfuscation, encryption and compression.

• Functionality includes execution of shell commands and upload/download of files.

• The RPC connection is set up using named pipes, for which numerous names have been
observed across multiple versions of Cheeky Chipmunk.

• Cheeky Chipmunk is added as a Windows service to maintain persistence.

Introduction

Cheeky Chipmunk is a malicious Microsoft Windows RPC server which is installed via a PowerShell
loader and tasked by a separate RPC client. It can be tasked to execute shell commands and to
upload/download files, enabling data exfiltration and providing a vector for execution of additional
payloads. Cheeky Chipmunk employs multiple defence evasion techniques and maintains persistence
as a Windows service.

Malware details

Metadata

Filename mstcf.ps1

Description Cheeky Chipmunk service loader

Size 181950 bytes

MD5 165be7620b78fe37cf25c797ee5b49e7

SHA-1 50c0bf9479efc93fa9cf1aa99bdca923273b71a1

SHA-256 22a8b4a7c7a467ea7fcf0a3930c99ecb482095093839683b400f58e2cdda176f

Filename securlsa.chk

Description Cheeky Chipmunk RPC server

Size 206848 bytes

MD5 38abeb8a68e9207da3e6ead88a9682ec

SHA-1 52c8cbd0545caab7596c1382c7fc5a479209851d

SHA-256 454e6c3d8c1c982cd301b4dd82ec3431935c28adea78ed8160d731ab0bed6cb7

Compile time 2019-03-26 11:59:38

Filename mscsp.exe

Description Cheeky Chipmunk RPC client

Size 55808 bytes

MD5 b03caf2f86a6b7adc06550bf666309a4

SHA-1 865f4c457bf86ff03456de828044f6ed6d6cf96a

SHA-256 d86f7d63bf8faa7070ba096523cf114947b55570dc50b0583797c9897ba3559c

Compile time 2013-12-09 10:37:34

Filename

Description Cheeky Chipmunk RPC client - DLL

Size 144896 bytes

MD5 50c98af90563bae4f89219d50feba38f

SHA-1 5d5825b14377c5e5fe96816dd72a90bd13dc9fc8

SHA-256 722fa0c893b39fef787b7bc277c979d29adc1525d77dd952f0cc61cd4d0597cc

Compile time 2019-11-15 12:19:44

Filename mscsp.exe

Description Cheeky Chipmunk RPC client

Size 50176 bytes

MD5 48afbdc27f3ff243ac2689e2ebd9f33c

SHA-1 7e4a6bac09ad214e98801bc199f96c265d7b6b48

SHA-256 27e7d2054a68510c974add24f33c1c7ef06ef68028cca021cd6b5e67363e2bea

Compile time 2008-07-19 08:33:09

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Persistence T1543.003 Create or Modify System
Process: Windows
Service

Cheeky Chipmunk maintains persistence
by adding a new Windows service
(pnrssp) for the RPC server component.

Execution

T1059.001 Command and Scripting
Interpreter: PowerShell

Open-source PowerShell runner code is
embedded in the Cheeky Chipmunk RPC
server and used to invoke commands
stored in the registry.

T1059.003 Command and Scripting
Interpreter: Windows
Command Shell

The Cheeky Chipmunk RPC server can
be sent Windows shell commands by the
RPC client.

T1559.001 Inter-Process
Communication:
Component Object Model

The Cheeky Chipmunk RPC server uses
COM to call embedded PowerShell
runner code.

T1047 Windows Management
Instrumentation

Cheeky Chipmunk implements an RPC
server to receive tasking.

Defense
Evasion

T1140 Deobfuscate/Decode
Files or Information

The Cheeky Chipmunk loader uses built-
in and open-source PowerShell libraries
to Base64-decode, 3DES-decrypt, and
GZIP-decompress the RPC server.

T1070.004 Indicator Removal on
Host: File Deletion

The Cheeky Chipmunk loader is deleted
from disk once the RPC server is
running.

Cheeky Chipmunk deletes the log file
containing details of its RPC server’s
execution, following exfiltration.

T1036.005

Masquerading: Match
Legitimate Name or
Location

Cheeky Chipmunk masquerades as a
legitimate Windows service path
(netsvcs) to maintain persistence.

The Cheeky Chipmunk log file
(NTuser.log) is named similarly to a

legitimate Windows log file
(NTuser.dat.log).

The Cheeky Chipmunk service (Peer

Name Resolution Provider) is

named similarly to a legitimate Windows
service (Peer Name Resolution

Protocol).

T1027 Obfuscated Files or
Information

Cheeky Chipmunk’s import names are
obfuscated by XORing with 0x55.

T1562.001 Impair Defenses: Disable
or Modify Tools

Cheeky Chipmunk implements an AMSI
bypass technique.

Collection T1005 Data from Local System Cheeky Chipmunk can be tasked to
collect files.

https://attack.mitre.org/techniques/T1543/003
https://attack.mitre.org/techniques/T1059/001
https://attack.mitre.org/techniques/T1059/003
https://attack.mitre.org/techniques/T1559/001
https://attack.mitre.org/techniques/T1047
https://attack.mitre.org/techniques/T1140
https://attack.mitre.org/techniques/T1070/004
https://attack.mitre.org/techniques/T1036/005
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/techniques/T1562/001
https://attack.mitre.org/techniques/T1005

Functionality

Overview

Cheeky Chipmunk consists of a loader and an RPC server which receives C2 from a separate RPC
client. In the analysed sample the loader is a PowerShell script; other loaders have also been
observed, including a Windows DLL, but this will not be covered in detail in this report.

Cheeky Chipmunk gains persistence on the victim machine by adding itself as a Windows service,
whereas the RPC client is a standalone executable binary which tasks the RPC server based on
command line arguments. Other RPC clients have also been observed, including a Windows DLL, but
this will not be covered in detail in this report.

The RPC server can be tasked to upload files and download files as well as to execute shell
commands, as detailed in the ‘Functionality (Tasking)’ section of this report.

Figure 1: Cheeky Chipmunk components

Installation

The Cheeky Chipmunk loader consists of a PowerShell script (shown as ‘script A’ in Figure 2)
containing a second embedded PowerShell script (shown as ‘script B’ in Figure 2), which in turn
contains the Cheeky Chipmunk RPC server binary. It requires PowerShell to be executed with
Administrator privileges to run successfully and uses obfuscated variable names to mask the
behaviour of the script.

The loader implements an AMSI avoidance technique, as described in the ‘Functionality (Defence
evasion)’ section of this report.

It creates the following registry key, adding itself to the NullSessionPipes list meaning it can

access the named pipe anonymously, allowing unauthenticated access to null sessions even if
restricted by security policies. The RPC server checks that this registry key is present when it starts
up.

\\HKLM\SYSTEM\CurrentControlSet\services\LanmanServer\Parameters\NullSessio

nPipes\pnrsvc

Enabling the ‘Network access: Restrict anonymous access to Named Pipes and Shares’ security
policy setting restricts null session access to unauthenticated users to all server pipes and shared

folders except those listed in the NullSessionPipes and NullSessionShares registry entries.1

1 https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/network-
access-restrict-anonymous-access-to-named-pipes-and-shares

Loader script /
service for
persistence

Cheeky
Chipmunk RPC

server

Standalone
Cheeky

Chipmunk RPC
client

Task

Result

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/network-access-restrict-anonymous-access-to-named-pipes-and-shares
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/network-access-restrict-anonymous-access-to-named-pipes-and-shares

The embedded PowerShell script is Base64-encoded, 3DES-CBC-encrypted, and GZIP-compressed.
The encryption key is derived using the built-in PowerShell function
Cryptography.PasswordDeriveBytes with a hash name of sha1, using the key SMQ0763eeg

and Initialisation Vector (IV) NVAO8351dihi. After Base64-decoding, this key is used with the IV

YDJFFTLPESPKMGUS to decrypt the embedded script, which is then GZIP decompressed using the

open-source PowerShell function [MemoryZipper]::UnZip.

Once decoded, the embedded PowerShell script contains a Base64-encoded Cheeky Chipmunk RPC
server x64 binary. This is decoded and written to
C:\Windows\security\database\securlsa.chk. This script also implements a persistence

mechanism which is described in the ‘Functionality (Persistence)’ section of this report, and this is
used to run the decoded RPC server. To clean up, the embedded script forcibly removes its own path,
so the loader script will no longer be present on disk. A visual description of this is shown below in
Figure 2.

Figure 2: Cheeky Chipmunk loading process

Execute Cheeky
Chipmunk
malware

Base64-decode

3DES-CBC-decrypt

GZIP-decompress

Set up service for persistence

Base64-decode

Implement AMSI avoidance

Delete self from disk

Execute script A

Execute script B

RPC server

The core Cheeky Chipmunk functionality is implemented as a Windows RPC server, which is tasked
by a corresponding stand-alone RPC client as described in the ‘Functionality (Tasking)’ section of this
report. The RPC server is registered with the RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH flag set.

When an RPC server is registered with the RPC_IF_ALLOW_CALLBACKS_WITH_NO_AUTH flag, the

RPC runtime invokes the registered security callback for all calls, regardless of identity, protocol
sequence, or authentication level of the client2.

The RPC communications are described in the ‘Communications’ section of this report.

PowerShell execution

The malware contains an embedded .NET binary, containing PowerShellRunner code, which is

open-source and allows PowerShell scripts to be executed without running powershell.exe. When

the RPC server starts up, Cheeky Chipmunk checks that the process “explorer.exe” is running.
Assuming this is found, COM is used to load the embedded PowerShellRunner binary and run a

command which will Base64-decode and execute the values stored in the following registry locations:

• \\HKLM\SOFTWARE\Microsoft\Network\Media\Enable

• \\HKLM\SOFTWARE\Microsoft\Network\Media\(Default)

These registry keys are not populated by default by Cheeky Chipmunk.

When the PowerShell command completes, a message is logged to %PUBLIC%\NTuser.log

If the command was successful, the following message is logged. The ‘%d’ format specifier is replaced

with an internal return code, which is always 0:

• PE %d\n

Otherwise, if an error occurred while executing the command, an internal error code describing the
failure is logged.

Additionally, the malware contains two strings that are intended to be logged but which, due to a
mistake, will never be written:

• “Invoke payload (%d)...” where %d will be the length of the payload

• “status = %d\n” where %d is an internal error

The PowerShell execution functionality runs concurrently with the RPC server in a loop which will
check every 10-12 minutes to see if the explorer.exe process has been restarted. If it has, it will

attempt to re-run the command from registry. However, due to a programming error, if the
explorer.exe process is restarted, Cheeky Chipmunk will instead crash, resulting in the RPC

service being stopped without alerting the user.

It is unclear why the payload is intended to be re-executed if explorer restarts, but it could suggest
that the payload is intended to interact with it.

2 https://docs.microsoft.com/en-us/windows/win32/rpc/interface-registration-flags

https://docs.microsoft.com/en-us/windows/win32/rpc/interface-registration-flags

Tasking

The RPC client for Cheeky Chipmunk is a standalone executable which can task the malware as
required.

RPC is an interprocess communication (IPC) mechanism that enables data exchange and invocation
of functionality residing in a different process. That different process can be on the same machine, on

the local area network, or across the Internet3.

The client takes the following command line arguments:

• Network address of the machine running the RPC server

• Command flag (as shown in Table 1)

• Command parameter (as described in Table 1)

Command flag ID Command Parameter

/p 0x01 Upload Local file path to upload to RPC server.

/g 0x02 Download Remote file path to download from RPC server.

/c 0x03 Execute Command line to execute on RPC server.

N/A 0x04 Get execution
output

Timeout value, hard-coded in client as 12
seconds – called immediately after an ‘execute’
command.

Table 1: Tasking commands

The tasking is sent from the RPC client to the RPC server as described in the ‘Communications
(Tasking communications)’ section of this report.

When each tasking request completes, either a relevant error string or a success string is printed to
the console by the RPC client. A list of these messages is included in the ‘Appendix (Client console
log messages)’ section of this report. The exception to this is the ‘get result’ command which will print
the retrieved result to the command line.

Upload
The ‘upload’ command sends the specified file path and contents to the RPC server.
The server checks that the file doesn’t already exist, creates the file and writes the provided content to
it.

If the file exists, an internal error code 0x50 is returned to the client and no further action is taken. If

the upload fails for any other reason the result of GetLastError is returned by the RPC server.

3 https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wpo/7d2df784-557e-4fde-9281-
9509653a0f17

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wpo/7d2df784-557e-4fde-9281-9509653a0f17
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wpo/7d2df784-557e-4fde-9281-9509653a0f17

Download
The ‘download’ command sends the specified file path to the RPC server. The RPC server reads the
file, checks that it is not empty and returns the content to the client.

If the file is empty, an internal error code 0x18 is returned to the client. If anything else fails, the RPC

server returns the result of GetLastError.

Assuming the file is successfully downloaded, it is written to the same path on the RPC client system.
If requested by the client, the RPC server will delete the file after it has been downloaded, however
the RPC client does not support this option.

Execute
The ‘execute’ command sends the specified command line to the RPC server.

The RPC server prepends the command line with cmd /c and runs it as a child process. It creates a

temporary file in the ‘%temp%’ directory or, if that fails, in the current working directory, with the
FILE_FLAG_WRITE_THROUGH flag set. The child process’ stdout and stderr output is written to

this file.

When a file is created with the FILE_FLAG_WRITE_THROUGH flag set, any file writes will go directly

to disk without going through any intermediate cache4. This means no evidence of the file will remain
in any cached locations after the file is deleted.

Get result
The ‘get result’ command is sent automatically by the RPC client after each ‘execute’ command.
The RPC client calls it with a timeout value, which is hard-coded to be 12 seconds. The RPC server
waits the requested time for the child process to complete and the temporary file to be written, then
returns the content of the temporary file to the RPC client and deletes the file. If an error occurs, a
message is returned to the RPC client, as shown in Table 2.

Error Message Clean up

No output from
executed command

Empty output \n Temporary file is
deleted.

Command not
completed within the
timeout

Timeout. Handle %s manually\n

(The ‘%s’ format specifier is replaced by the
temporary file name.)

None.

Temporary file not found Output not found\n Temporary file deleted
on reboot.

Table 2: Execute command error messages

4 https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

https://docs.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

If the temporary file cannot be found, Cheeky Chipmunk cannot delete the file immediately, so instead
it schedules the file to be deleted on reboot using MoveFileExW. This ensures that if the execution

exceeded the timeout value and the file is written after the clean-up is supposed to have occurred, the
artefact will be removed on reboot.

The Windows API function MoveFileExW with destination NULL and the flag
MOVEFILE_DELAY_UNTIL_REBOOT causes the file to be deleted when the machine is rebooted5.

Persistence

Cheeky Chipmunk maintains persistence using a Windows service. Details of this service are shown
in Table 3.

Name Description

Name Pnrssp

Binary Path Name %SystemRoot%\system32\svchost.exe -k netsvcs

Display Name Peer Name Resolution Provider

Description Uses the NTLM MS-CHAP protocol to encapsulate and negotiate options
in order to resolve domain names

Depends On RpcSs

Table 3: Service details

5 https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-movefileexw

https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-movefileexw

Defence evasion

Cheeky Chipmunk employs several methods to evade detection.

Import resolution
Windows API functions are dynamically resolved by looking up the function name in the relevant
module export tables. These function names, and the associated module names, are XOR-encoded
with 0x55 to prevent static detection.

Blending with OS behaviour
The service is added to an existing service group, allowing it to blend with normal operating system
behaviour. The log and service names are also named similarly to Windows files in an attempt to
appear legitimate: NTuser.dat.log is a legitimate file, NTuser.log is a Cheeky Chipmunk file,

the Peer Name Resolution Protocol is a legitimate service, the Peer Name Resolution

Provider is the Cheeky Chipmunk service.

Removing files

The loader script forcibly removes itself, so the initial mstcf.ps1 script will no longer be present on

disk once it has loaded the RPC server and created the Windows service.

AMSI Avoidance
The loader script contains an embedded Base64-encoded .NET binary for Antimalware Scan
Interface (AMSI) detection.

If AMSI is detected, then Cheeky Chipmunk uses an avoidance technique, where the .NET binary
loads amsi.dll and finds AmsiScanBuffer, then overwrites it with either x86 or x64 shellcode to

return 0x01, causing all scripts to pass the AMSI check. This will stop the malware installation being

detected and potentially blocked by AMSI.

The Windows Antimalware Scan Interface (AMSI) is a feature which can be integrated into any
antimalware product which is present on a machine and is used to scan scripts for malicious content6.

6 https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

Communications

Overview

Communications occur via Remote Procedure Call (RPC) using a named pipe. Multiple named pipes
have been observed in use by different versions of Cheeky Chipmunk, including:

• \pipe\atctl

• \pipe\pnrsvc

• \pipe\msbrws

In addition to this, internal RPC structures contain a GUID which can be used to identify RPC client
and RPC server interfaces. The GUID observed in use by the Cheeky Chipmunk malware is
{7DF02564-C31E-4A68-A688-72D0EC840746}.

When any tasking is requested the internal network traffic will be as shown in Figure 3. Of note, this
contains the GUID mentioned above. The SMB packet is shown in Figure 4.

Figure 3: Cheeky Chipmunk traffic example

Figure 4: Cheeky Chipmunk SMB packet overview

The ioctl request contains the identifying service name as highlighted in Figure 5.

Figure 5: Cheeky Chipmunk ioctl request

The RPC packet is shown in Figure 6. Of note is the Opnum field which indicates the requested

command. This value maps to the command ID shown in Table 1 in the ‘Functionality (Tasking)’
section of this report. Command parameters are encoded in the Stub data field, examples of which

are included in the ‘Communications (Tasking communications)’ section of this report.

Figure 6: Cheeky Chipmunk RPC packet

Tasking communications

This section details the arguments for each tasking request, whether these arguments are sent by the
RPC client or returned by the RPC server, and what the RPC stub data looks like for each tasking
command. Where [out] is specified next to an argument, this means the value is returned by the RPC
server based on the result of the task processing.

Upload
An example of the data sent to the RPC server to request a file ‘upload’ is shown in Table 4.

The ‘upload’ function arguments are:

• Unicode file name to upload

• Size of file

• File contents

Upload stub data for request

11 00 00 00 00 00 00 00 11 00 00 00 43 00 3A 00 5C 00 74 00 65 00 73 00

74 00 5C 00 74 00 65 00 73 00 74 00 2E 00 74 00 78 00 74 00 00 00 00 00

15 00 00 00 00 00 02 00 15 00 00 00 63 6F 6E 74 65 6E 74 73 20 6F 66 20

74 65 73 74 20 66 69 6C 65

RPC interpreted data File path File contents

Table 4: Cheeky Chipmunk upload communication to RPC server

The contents of the file will be dependent upon the type of file requested. In the above example this is
a text file, below is the text representation of the file path data and file content data shown in Table 4:

C:\test\test.txt
contents of test file

The possible return values which can be sent by the RPC server following this command are:

• 00 00 00 00 (success)

• 50 00 00 00 (file already exists)

• Result of GetLastError (any other failure)

Download
Examples of the traffic for a successful ‘download’ task to and from the RPC server are shown in
Table 5 and Table 6.

The 'download’ function arguments are:

• Unicode file name to download

• [out] File size

• [out] File contents

• Delete flag

If the delete flag is set, the file will be deleted from the RPC server machine once the file has been
sent from the RPC server to the RPC client.

Download stub data for request

12 00 00 00 00 00 00 00 12 00 00 00 43 00 3A 00 5C 00 74 00 65 00 73 00

74 00 5C 00 74 00 65 00 73 00 74 00 32 00 2E 00 74 00 78 00 74 00 00 00

00 00 00 00

RPC interpreted data File path

Table 5: Cheeky Chipmunk download communication to RPC server

Download stub data for response

17 00 00 00 00 00 02 00 17 00 00 00 63 6F 6E 74 65 6E 74 73 20 6F 66 20

74 65 73 74 20 66 69 6C 65 20 32 00 00 00 00 00

RPC interpreted data File contents

Table 6: Cheeky Chipmunk upload communication to RPC client

The contents of the file will be dependent upon the type of file requested. In the above example this is
a simple text file, below is the text representation of the file path shown in Table 5 and the returned
file contents shown in Table 6.

C:\test\test2.txt
contents of test file 2

Execute
An example of the traffic for an execution task request is shown in Table 7.

The ‘execute’ function only has one argument:

• The Unicode command to run

Execute stub data for request

20 00 00 00 00 00 00 00 20 00 00 00 43 00 3A 00 5C 00 57 00 69 00 6E 00

64 00 6F 00 77 00 73 00 5C 00 53 00 79 00 73 00 74 00 65 00 6D 00 33 00

32 00 5C 00 6D 00 73 00 70 00 61 00 69 00 6e 00 74 00 2E 00 65 00 78 00

65 00 00 00

RPC interpreted data File Path

Table 7: Cheeky Chipmunk execute communication to RPC server

The text representation of the file path data shown in Table 7 is:

 C:\Windows\System32\mspaint.exe

The return value for a successful run and an unsuccessful run are as follows:

• 00 00 00 00

• Result of GetLastError

Get result
The ‘get result’ function arguments are:

• Timeout interval (in seconds)

• [out] Length result string

• [out] Result string

An example of the response traffic where a timeout occurred is shown in Table 8.

Get result stub data for response

34 00 00 00 00 00 02 00 34 00 00 00 54 69 6D 65 6F 75 74 2E 20 48 61 6E

64 6C 65 20 43 3A 5C 57 69 6E 64 6F 77 73 5C 54 45 4D 50 5C 31 41 36 39

2E 74 6D 70 20 6D 61 6E 75 61 6C 6C 79 5C 6E 00 00 00 00 00

RPC interpreted data Result string

Table 8: Cheeky Chipmunk get result communication to client

The text representation of the returned result string data shown in Table 8 is:

 Timeout. Handle C:\Windows\TEMP\1A69.tmp manually\n

The possible result strings for the get result command are all hard coded in the server binary as ASCII
strings. All possible values for this are covered in the ‘Functionality (Tasking)’ section of this report.

Conclusion

Cheeky Chipmunk is assessed to be of medium sophistication and is unusual in its use of RPC for
C2.

The loader is a self-deleting PowerShell script with the malware embedded inside, underneath
multiple layers of encryption, encoding and compression. The loader implements an AMSI avoidance
technique to ensure that the loading process can occur un-interrupted.

Cheeky Chipmunk implements many defence evasion techniques, including single-byte XOR-
encoding of imported function names with 0x55, which has been previously observed in regular use

by Turla.

Networks infected with this malware risk files being exfiltrated. In addition to this, with the ability to
upload, download and execute files on the victim machine, this has the potential to be a vector for
downloading and running additional malware.

Although in theory the RPC client could be external to the network on which the RPC server is
running, in many organisations this traffic would be blocked at the network boundary. As there are no
other communication methods available in either the Cheeky Chipmunk server or client, it is likely to
be used alongside other components.

Detection

Indicators of compromise

Type Description Values

Registry
value
name

Registry value
required for the
running of the
service - this will be
present on a victim
machine

\\HKLM\SOFTWARE\Microsoft\Windows
NT\CurrentVersion\Svchost\netsvcs\Pnrssp

Filename Name of the
Cheeky Chipmunk
log file that will be
present on a victim
machine

%PUBLIC%\NTUser.log

Registry
value
name

Registry value
required for the
running of the
service - this will be
present on a victim
machine

\\HKLM\SYSTEM\CurrentControlSet\services\pnrssp\ServiceMain\ServiceMain

Registry
value
name

Registry value
required for the
running of the
service - this will be
present on a victim
machine

\\HKLM\SYSTEM\CurrentControlSet\services\pnrssp\ServiceDll\%SYSTEMROOT\s
ecurity\database\securlsa.chk

Registry
value
name

NullSessionPipes
registry value - this
will be present on a
victim machine

\\HKLM\SYSTEM\CurrentControlSet\services\LanmanServer\Parameters\NullSessi
onPipes\Pnrsvc

Filename Name of the RPC
server that will be
present on a victim
machine

%SYSTEMROOT%\security\database\securlsa.chk

Named
pipes

Named pipes used
for RPC
communications

\\.\pipe\pnrsvc
\\.\pipe\atctl
\\.\pipe\msbrws

GUID RPC GUID, seen in
network traffic and
hardcoded in
binaries

7DF02564-C31E-4A68-A688-72D0EC840746

Rules and signatures

Description
Detects Cheeky Chipmunk argument checking code to determine command to
process.

Precision No false positives seen from VirusTotal retro-hunts

Rule type YARA

rule CheekyChipmunk_command_argument_check

{

 meta:

 author = "NCSC"

 description = "Detects Cheeky Chipmunk argument checking code to

determine command to process. "

 date = "2022-01-24"

 hash1 = "7e4a6bac09ad214e98801bc199f96c265d7b6b48"

 strings:

 $1 = {66 83 F8 70 75 ?? C7 85 ?? FD FF FF 01 00 00 00 EB ??}

 //cmp ax, 70h ; 'p'

 //jnz short loc_401C39

 //mov [ebp+Switch], 1

 //jmp short loc_401C7F

 $2 = {66 83 F8 63 75 ?? C7 85 ?? FD FF FF 03 00 00 00 EB ??}

 //cmp ax, 63h ; 'c'

 //jnz short loc_401C4B

 //mov [ebp+Switch], 3

 //jmp short loc_401C7F

 $3 = {66 83 F8 67 75 ?? C7 85 ?? FD FF FF 02 00 00 00 EB ??}

 //cmp ax, 67h ; 'g'

 //jnz short loc_401C5D

 //mov [ebp+Switch], 2

 //jmp short loc_401C7F

 $4 = {66 83 F8 72 75 ?? C7 85 ?? FD FF FF 01 00 00 00 EB ??}

 //cmp ax, 72h ; 'r'

 //jnz short loc_401C6F

 //mov [ebp+var_300], 1

 //jmp short loc_401C7F02}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects the Cheeky Chipmunk RPC GUID

Precision No false positives seen from VirusTotal retro-hunts

Rule type YARA

rule CheekyChipmunk_GUID_bytes

{

 meta:

 author = "NCSC"

 description = "Detects the Cheeky Chipmunk RPC GUID"

 date = "2022-01-24"

 hash1 = "52c8cbd0545caab7596c1382c7fc5a479209851d"

 hash2 = "865f4c457bf86ff03456de828044f6ed6d6cf96a"

 hash3 = "5d5825b14377c5e5fe96816dd72a90bd13dc9fc8"

 hash4 = "7e4a6bac09ad214e98801bc199f96c265d7b6b48"

 strings:

 $GUID = {64 25 F0 7D 1E C3 68 4A A6 88 72 D0 EC 84 07 46}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects the Cheeky Chipmunk RPC service control handler

Precision No false positives seen from VirusTotal retro-hunts

Rule type YARA

rule CheekyChipmunk_control_handler_code

{

 meta:

 author = "NCSC"

 description = "Detects the Cheeky Chipmunk RPC service control

handler"

 date = "2022-01-24"

 hash1 = "52c8cbd0545caab7596c1382c7fc5a479209851d"

 strings:

 $servicecode = {41 B8 01 00 00 00 33 D2 B9 03 00 00 00 E8 ?? ??

?? ?? E8 ?? ?? ?? ?? 45 33 C0 33 D2 B9 01 00 00 00 E8 ?? ?? ?? ?? EB ??

41 B8 01 00 00 00 33 D2 B9 06 00 00 00 E8 ?? ?? ?? ?? 45 33 C0 33 D2 B9

07 00 00 00 E8 ?? ?? ?? ?? EB ?? 41 B8 01 00 00 00 33 D2 B9 05 00 00 00

E8 ?? ?? ?? ?? 45 33 C0 33 D2 B9 04 00 00 00 E8 ?? ?? ?? ??}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects the stack string for the Cheeky Chipmunk log file name

Precision No false positives seen from VirusTotal retro-hunts

Rule type YARA

rule CheekyChipmunk_logfilename_stackstring

{

 meta:

 author = "NCSC"

 description = "Detects the stack string for the Cheeky Chipmunk

log file name"

 date = "2022-01-24"

 hash1 = "52c8cbd0545caab7596c1382c7fc5a479209851d"

 strings:

 $name = {B8 5C 00 00 00 66 89 84 24 ?? 00 00 00 B8 4E 00 00 00 66

89 84 24 ?? 00 00 00 B8 54 00 00 00 66 89 84 24 ?? 00 00 00 B8 55 00 00

00 66 89 84 24 ?? 00 00 00 B8 73 00 00 00 66 89 84 24 ?? 00 00 00 B8 65

00 00 00 66 89 84 24 ?? 00 00 00 B8 72 00 00 00 66 89 84 24 ?? 00 00 00

B8 2E 00 00 00 66 89 84 24 ?? 00 00 00 B8 6C 00 00 00 66 89 84 24 ?? 00

00 00 B8 6F 00 00 00 66 89 84 24 ?? 00 00 00 B8 67 00 00 00 66 89 84 24

?? 00 00 00 33 C0 66 89 84 24 ?? 00 00 00}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Cheeky Chipmunk loader AMSI avoidance strings

Precision No false positives seen from VirusTotal retro-hunts

Rule type YARA

rule CheekyChipmunk_amsi_avoidance_strings

{

 meta:

 author = "NCSC"

 description = "Detects Cheeky Chipmunk loader AMSI avoidance

strings"

 date = "2022-01-24"

 hash1 = "50c0bf9479efc93fa9cf1aa99bdca923273b71a1"

 strings:

 $functionname = "FindAmsiFun"

 $x86found = "x32 protection detected"

 $x64found = "x64 protection detected"

 condition:

 all of them

}

Description Detects stack string for Cheeky Chipmunk named pipe

Precision No false positives seen from VirusTotal retro-hunts

Rule type YARA

rule CheekyChipmunk_namedpipe_stackstring

{

 meta:

 author = "NCSC"

 description = "Detects stack string for Cheeky Chipmunk named

pipe"

 date = "2022-01-24"

 hash1 = "52c8cbd0545caab7596c1382c7fc5a479209851d"

 strings:

 $stackstring = {B8 5C 00 00 00 66 89 84 24 80 00 00 00 B8 70 00

00 00 66 89 84 24 82 00 00 00 B8 69 00 00 00 66 89 84 24 84 00 00 00 B8

70 00 00 00 66 89 84 24 86 00 00 00 B8 65 00 00 00 66 89 84 24 88 00 00

00 B8 5C 00 00 00 66 89 84 24 8A 00 00 00 B8 70 00 00 00 66 89 84 24 8C

00 00 00 B8 6E 00 00 00 66 89 84 24 8E 00 00 00 B8 72 00 00 00 66 89 84

24 90 00 00 00 B8 73 00 00 00 66 89 84 24 92 00 00 00 B8 76 00 00 00 66

89 84 24 94 00 00 00 B8 63 00 00 00 66 89 84 24 96 00 00 00 33 C0 66 89

84 24 98 00 00 00}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Cheeky Chipmunk XOR function

Precision No false positives seen from VirusTotal retro-hunts

Rule type YARA

rule CheekyChipmunk_xor_function_code

{

 meta:

 author = "NCSC"

 description = "Detects Cheeky Chipmunk XOR function"

 date = "2022-01-24"

 hash1 = "52c8cbd0545caab7596c1382c7fc5a479209851d"

 strings:

 $funccode = {8B 44 24 04 48 8B 4C 24 20 0F B6 04 01 8B 0C 24 03

C8 8B C1 89 04 24 8B 44 24 04 48 8B 4C 24 20 0F B6 04 01 83 F0 55 8B 4C

24 04 48 8B 54 24 20 88 04 0A B8 01 00 00 00 48 6B C0 00 48 8B 4C 24 20

0F B6 04 01 8B 0C 24 03 C8 8B C1 89 04 24}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Cheeky Chipmunk client print format strings

Precision No false positives seen from VirusTotal retro-hunts

Rule type YARA

rule CheekyChipmunk_print_format_strings

{

 meta:

 author = "NCSC"

 description = "Detects Cheeky Chipmunk client print format

strings"

 strings:

 $SN = "0x%04d: SN %S: "

 $RC = "0x%04d: RC %S: "

 $EX = "0x%04d: EX %S: "

 $SNSuccess = "SN %S: success"

 $RCSuccess = "RC %S: success"

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects network traffic containing Cheeky Chipmunk Default Command Timeout

Precision The rules have been tested and no false positives identified

Rule type Snort

alert tcp any any -> any 445

(msg:"CheekyChipmunk_default_command_timeout"; \

 content:"|fe|SMB"; offset:4; depth:4; \

 # Command: IOCTL

 byte_test:2,=,11,8,relative,little; \

 content:"|e0 2e 00 00|"; fast_pattern; offset:148; depth:4; \

 sid: 1000001; rev:1; classtype: malware-cnc;)

Description Detects network traffic containing Cheeky Chipmunk RPC GUID

Precision The rules have been tested and no false positives identified

Rule type Snort

alert tcp any any -> any 445 (msg:"CheekyChipmunk_RPC_GUID"; \

 content:"|fe|SMB"; offset:4; depth:4; \

 # Command: Write Request

 byte_test:2,=,9,8,relative,little; \

 content:"d%|f0|}|1e c3|hJ|a6 88|r|d0 ec 84 07|F"; offset:148;

depth:16; \

 sid: 1000002; rev:1; classtype: malware-cnc;)

Description Detects network traffic containing Cheeky Chipmunk named pipe

Precision The rules have been tested and no false positives identified

Rule type Snort

alert tcp any any -> any 445 (msg:"CheekyChipmunk_namedpipe_pnrsvc"; \

 content:"|fe|SMB"; offset:4; depth:4; \

 # Command: Create Request

 byte_test:2,=,5,8,relative,little; \

 content:"p|00|n|00|r|00|s|00|v|00|c|00|"; offset:124; depth:12; \

 sid:1000003; rev:1; classtype: malware-cnc;)

Description Detects network traffic containing Cheeky Chipmunk named pipe

Precision The rules have been tested and no false positives identified

Rule type Snort

alert tcp any any -> any 445 (msg:"CheekyChipmunk_namedpipe_atctl"; \

 content:"|fe|SMB"; offset:4; depth:4; \

 # Command: Create Request

 byte_test:2,=,5,8,relative,little; \

 content:"a|00|t|00|c|00|t|00|l|00|"; offset:124; depth:10; \

 sid:1000004; rev:1; classtype: malware-cnc;)

Description Detects network traffic containing Cheeky Chipmunk named pipe

Precision The rules have been tested and no false positives identified

Rule type Snort

alert tcp any any -> any 445 (msg:"CheekyChipmunk_namedpipe_msbrws"; \

 content:"|fe|SMB"; offset:4; depth:4; \

 # Command: Create Request

 byte_test:2,=,5,8,relative,little; \

 content:"m|00|s|00|b|00|r|00|w|00|s|00|"; offset:124; depth:12; \

 sid:1000005; rev:1; classtype: malware-cnc;)

Appendix

Client console log messages

Some of the error messages printed to console by the RPC client may vary slightly between versions,
but the general format and abbreviations are consistent (SN = send, RC = receive, EX = execute, GR =

get result).

Upload
• 0x%04d: SN %S: err size...aborting

• 0x%04d: SN %S: failed %d...aborting

• 0x%04d: SN %S: err %d...aborting

• SN %S: success

Download
• 0x%04d: RC %S: zero length.

• 0x%04d: RC %S: failed %d...aborting

• RC %S: success

Execute
• 0x%04d: EX %S: failed %d...aborting

• EX: wait for ~%d seconds for output...

Get result
• 0x%04d: GR %S: failed %d...aborting

• In success case this will print the results of the file execution

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings
and recommendations made have not been provided with the intention of avoiding all risks and
following the recommendations will not remove all such risk. Ownership of information risks
remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

