

Malware Analysis Report

Busy Buzzard

25 March 2022

© Crown Copyright 2022

Version 1.0

Busy Buzzard
A plugin-based Windows remote access tool

Executive summary

• Busy Buzzard is deployed as an RC4-encrypted Windows DLL, with a shellcode stub to
decrypt and load it into memory.

• Command and control (C2) communication is either sent over HTTPS with RC4 encryption
and Base64 encoding of tasking or sent directly over raw TCP with RC4 encryption of tasking.

• The malware provides the capability to load and execute shellcode or Windows DLL plugins.

Introduction

Four samples were uploaded to Virus Total, by a user in Vietnam, in August 2021 (see the ‘Malware
details (Metadata)’ section). The naming convention indicated that these files were memory dumps,
uploaded in two parts, from two separate processes.

The first memory dump for each process contained the same shellcode loader stub, immediately
followed by the same malicious Windows 64-bit DLL (decrypted and running in memory). This DLL
was identified as the Busy Buzzard malware.

The second memory dump for each process was found to contain a suspected Windows 64-bit
shellcode plugin for the Busy Buzzard malware.

Further searches in Virus Total identified two separate variants of the Busy Buzzard malware, one of
which uses raw TCP-based command and control (C2) communications, and the other of which uses
HTTPS-based C2 communications. Compilation timestamps indicate that the Busy Buzzard malware
may have been in use since at least 2016.

Malware details

Metadata

Filename process.0xffffa88b75bfd840.0x2b28af80000.dmp

Description
Process memory dump comprising shellcode loader stub and Busy Buzzard
implant DLL (TCP variant)

Size 77823 bytes

MD5 bbc49eac5b7c30708704233416694591

SHA-1 8fd99d9066020003358aa3e23c9af3d4911ce979

SHA-256 41daf4c86e14da87bf2f94b36115a1e7da76d14af0aba0c251bb3e9dbfb40bad

Compile time 28th July 2016, 10:07:26 UTC (Busy Buzzard implant DLL)

Filename process.0xffffa88b75bfd840.0x2b28b200000.dmp

Description Busy Buzzard shellcode module

Size 12287 bytes

MD5 c5af2332d8f7bdd56ed2ae0091422153

SHA-1 f737067d41bc77dc7dd09ecb6eb710619bc2dfde

SHA-256 6cf6d1a9caee970bcb393a085d1dbb1f01a81fa684f6faf7ddbf0253302e1a4e

Filename svchost.exe.3016.2b28af80000-2b28af92fff.dmp

Description
Process memory dump comprising shellcode loader stub and Busy Buzzard
implant DLL (TCP variant)

Size 77824 bytes

MD5 d40a4f0b426b5500d0e7e331f99c6aca

SHA-1 266852db4ad2d293469515820fd5e7c228cd4b3e

SHA-256 79024943b61d9c7fe7f8e225f2825ee4fbdeb6dcf2ecdfda3f6414bd6f87bf32

Compile time 28th July 2016, 10:07:26 UTC (Busy Buzzard implant DLL)

Filename svchost.exe.3016.2b28b200000-2b28b202fff.dmp

Description Busy Buzzard shellcode module

Size 12288 bytes

MD5 f11471c0667eb010a319bb4765ed72c7

SHA-1 cf6339501de54590f8bbbc3cfb8051b95f6a1a42

SHA-256 bd6992029c879b74b255aeb3549b8da487aff75d3f614832c23b4cd3717a067b

Filename 83030f299a776114878bcd2ade585d97836ef4ddb6943cb796be2c88bcb83a83.sample

Description Busy Buzzard implant DLL (TCP variant)

Size 71831 bytes

MD5 c0e649fa591ed6c5746d394cb2de3c72

SHA-1 d2b8f4fe6eedb8b87521772fc823da596f2403b7

SHA-256 83030f299a776114878bcd2ade585d97836ef4ddb6943cb796be2c88bcb83a83

Compile time 10th June 2019, 07:58:10 UTC

Filename 0b182464a2351a9d79c1222bb1fdf35e.dll

Description Busy Buzzard implant DLL (HTTPS variant)

Size 68096 bytes

MD5 0b182464a2351a9d79c1222bb1fdf35e

SHA-1 6a673508d46c0bbff74ee24384c8bc841c11ea4d

SHA-256 6b52fd7ee1442b4ed2c675f958a42a6c793bfe14a75de0988c4381367284f085

Compile time 7th January 2019, 01:33:18 UTC

Filename 10000000.dll

Description Busy Buzzard implant DLL (HTTPS variant)

Size 68096 bytes

MD5 037261d5571813b9640921afac8aafbe

SHA-1 e74affd6c766156e3fe803917f28da08fe7000ef

SHA-256 9d6e14cd244f6c49e11d2b47f12116b5848aaed7a6aaa218fb023b33f7c12a3b

Compile time 7th January 2019, 01:33:18 UTC

Filename 80f55.rec.dll

Description Busy Buzzard implant DLL (HTTPS variant)

Size 127147 bytes

MD5 c5994f9fe4f58c38a8d2af3021028310

SHA-1 48152eeb1d74a84ba86b34f419cf1c7a105e41ff

SHA-256 ca9bcf268330a4fffcec025920514e0071651c35895b15b2f1dab8813c8b8e99

Compile time 7th January 2019, 01:33:18 UTC

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Execution T1129 Shared Modules Busy Buzzard uses the LoadLibraryW

and GetProcAddress API functions to

load additional modules and execute
functions from them.

Execution T1106 Native API Busy Buzzard uses the VirtualAlloc

and CreateThread API functions to

inject and execute shellcode plugins.

Defense
Evasion

T1055.009 Process Injection:
Proc Memory

Busy Buzzard is injected into the memory
of a process, with additional shellcode
modules also injected into the memory of
the same process.

Defense
Evasion

T1497.001 Virtualization/
Sandbox Evasion:
System Checks

Busy Buzzard tests the Windows
Registry for the presence of a key
associated with VMware. The HTTPS
variant also tests for the presence of the
VMXh port (associated with VMware),
using the IN assembly instruction.

Discovery T1083 File and Directory
Discovery

The Busy Buzzard shellcode plugin
provides the capability to browse files
and directories.

Discovery T1082 System Information
Discovery

The Busy Buzzard beacon contains OS,
username, hostname and process
information.

Discovery T1016 System Network
Configuration
Discovery

The Busy Buzzard beacon contains the
victim IP address.

Discovery T1124 System Time
Discovery

The Busy Buzzard beacon contains the
time at which the implant was started.

Command And
Control

T1071.001 Application Layer
Protocol: Web
Protocols

Busy Buzzard (HTTPS variant) uses
HTTPS protocol for C2 communication.

Command And
Control

T1095 Non-Application
Layer Protocol

Busy Buzzard (TCP variant) uses raw
TCP protocol for C2 communication.

Command And
Control

T1573 Encrypted Channel The Busy Buzzard beacon is RSA-
encrypted using a hard-coded public key.
Other C2 communications are RC4-
encrypted using a shared, randomly
generated, key.

https://attack.mitre.org/techniques/T1129
https://attack.mitre.org/techniques/T1106
https://attack.mitre.org/techniques/T1055/009
https://attack.mitre.org/techniques/T1497/001
https://attack.mitre.org/techniques/T1083
https://attack.mitre.org/techniques/T1082
https://attack.mitre.org/techniques/T1016
https://attack.mitre.org/techniques/T1124
https://attack.mitre.org/techniques/T1071/001
https://attack.mitre.org/techniques/T1095
https://attack.mitre.org/techniques/T1573

Functionality

Overview

Two variants of the Busy Buzzard malware were identified, one of which uses raw TCP-based C2
communications (referred to hereafter as ‘the TCP variant’), and the other of which uses HTTPS-
based C2 communications (referred to hereafter as ‘the HTTPS variant’).

Two different versions of the TCP variant were identified, compiled in July 2016 and June 2019
respectively. The versions are broadly similar in functionality with the main differences being in the
implementation of the C2 communications (these differences are described in more detail in the
‘Communications (Command and control)’ section).

The samples of the HTTPS variant were all compiled in January 2019, indicating that this variant is
most likely operated concurrently with the later version of the TCP variant.

The malware starts by checking whether it is executing within a VMware virtualised environment (see
the ‘Functionality (Anti-analysis techniques)’ section), exiting if this is the case.

This is most likely an attempt to hinder sandbox analysis by security researchers since VMware is
often used for dynamic malware analysis.

The TCP variant generates a unique mutex name associated with the malware. If a mutex with this
name is found to already exist then the malware exits, ensuring that only a single instance of the
malware is running at any given time. A description of how the mutex name is generated can be found
in the ‘Functionality (Mutex name generation)’ section.

The malware then creates a structure containing pointers to the following ‘helper’ functions, that is
passed to shellcode plugins (note that function names have been assigned by the report author):

• send_data_to_c2 (sends data to the C2 server).

• connect_to_c2 (connects a socket to the C2 server).

• rc4_crypt (encrypts or decrypts using a previously shared RC4 key).

• calc_crc32 (calculates the CRC32 checksum of a sequence of bytes).

• get_c2_beacon_response (gets the value returned by the C2 server in response to an

initial malware beacon).

• send_data_to_c2_and_get_response (sends data to the C2 server and then receives

the response).

Finally, the malware enters the main C2 loop (see the ‘Communications (Command and control)’
section).

Decrypted commands are represented by a single byte value that determines the action to be taken
by the malware. The HTTPS variant responds to commands identified by the byte values 0x64 (‘d’)

and 0x73 (‘s’). In addition to these, the TCP variant also responds to commands identified by the byte

values 0x66 (‘f’) and 0x6c (‘l’). The commands provide the following functionality:

Command ID Description

0x64 (‘d’) Loads a DLL, specified as a UTF-16 string, into memory using the Windows API
function LoadLibraryW and executes a function, specified as an ASCII string,

from the DLL. The function can be referred to either by name or ordinal value.
Any arguments to be passed to the function are specified after the library name
and function name/ordinal. For example to call the function myFunc with the

argument Hello World, from the library myLib.dll, the command data

would appear as follows:

d\x00m\x00y\x00L\x00i\x00b\x00.\x00d\x00l\x00l\x00

\x00myFunc\x00Hello World\x00

where \x00 is a separating null byte. Similarly to call a function with the ordinal

value 2, from the same library and with the same argument as above, the

command data would appear as follows:

d\x00m\x00y\x00L\x00i\x00b\x00.\x00d\x00l\x00l\x00

\x002\x00Hello World\x00

0x73 (‘s’) Copies the specified blob of shellcode into memory and executes it, passing the
address of the structure of ‘helper’ function pointers as an argument.

0x66 (‘f’) Stores a 4-byte value that is sent by the C2 server in response to the initial
malware beacon (see the ‘Communications (Command and control)’ section).

0x6c (‘l’) Sets the interval (seconds) between keep-alive malware beacons (see the
‘Communications (Command and control)’ section). The interval is specified as
a 4-byte integer value.

Table 1: Busy Buzzard command IDs and descriptions

Initial execution

The Busy Buzzard malware is deployed as a payload composed of a shellcode loader stub,
immediately followed by an RC4-encrypted malicious Windows DLL. The exact mechanism used to
initially execute the malware payload cannot be determined from the samples available, however
open-source reporting1 indicates that it is most likely to involve the use of a separate loader.

The shellcode stub begins by walking the Export Table of kernel32.dll, locating the Windows API

functions LoadLibraryA and GetProcAddress by name. These two functions are then used to

resolve Windows API functions that are required to load Busy Buzzard into memory, with the library
and function names being constructed directly on the stack. The shellcode stub is followed by a
sequence of 8 NOP (0x90) bytes, a 4-byte value that defines the size of the Busy Buzzard Windows

DLL, the 16-byte RC4 key used for decryption, and finally the encrypted Busy Buzzard Windows DLL
itself.

The shellcode stub extracts the size of the Busy Buzzard Windows DLL and the RC4 key for
decryption using hard-coded address offsets. This information is then used to decrypt the Busy
Buzzard Windows DLL before reflectively loading it into memory.

It should be possible to automatically extract Busy Buzzard Windows DLLs by searching for the
sequence of NOP (0x90) bytes. This location can then be used to extract the size of the Busy

Buzzard Windows DLL and the RC4 key used for decryption.

1 http://jsac.jpcert.or.jp/archive/2021/pdf/JSAC2021_202_niwa-yanagishita_en.pdf

Mutex name generation

The TCP variant creates a mutex name by firstly calculating the CRC32 checksum of a range of bytes
composed of a hard-coded RSA public key (used for C2 communications) plus 11 additional hard-
coded bytes (see Figure 1). This value is then converted to a hex string in reverse byte order. The
mutex name is this hex string with a 0x01 byte appended to it.

It isn’t clear why the malware includes a 0x01 byte at the end of the generated mutex name. Named

mutexes typically shouldn’t include non-printable ASCII characters, so this could potentially be used
to easily identify mutex names associated with the Busy Buzzard malware.

Using the example shown in Figure 1, the CRC32 checksum (as calculated over the indicated bytes)
is 0xB5B364A0. Converting to a hex string in reverse byte order results in the string 0A463B5B. After

appending a 0x01 byte to this string the generated mutex name, whose existence will be checked by

the malware, is 0A463B5B\x01 (see the ‘Detection (Indicators of compromise)’ section).

Figure 1: Bytes used to generate raw TCP variant mutex name

Defence evasion

Both the shellcode loader stub and the malware construct notable strings directly on the stack. This is
most likely used to hinder basic static analysis.

Both the TCP and HTTPS variants check whether a key with the name HKEY_CLASSES_ROOT\

Applications\VMwareHostOpen.exe is present within the Windows Registry. The HTTPS

variant also attempts to read data from the VX virtual I/O port and checks whether this returns the

value VMXh. These artefacts uniquely identify that the malware is executing within a VMware

virtualised environment. If either of these checks is successful then the malware exits, which is likely
intended to hinder dynamic analysis.

The HTTPS variant starts a separate thread that continually checks whether the network has been
disconnected or the malware is being debugged, exiting if either of these is true.

Shellcode plugin

The shellcode plugin starts by resolving the base address of kernel32.dll and using this to locate

the Windows API functions GetProcAddress and LoadLibraryA by the ROR132 hash of their

name. These two functions are then used to resolve further Windows API functions based upon the
ROR13 hash of their name. The names of additional libraries, needed to resolve the Windows API
functions, are constructed directly on the stack.

The samples have been extracted from the memory of a running process; therefore the Windows API
functions have already been resolved by the shellcode plugin. Windows API functions within
kernel32.dll can be inferred because the shellcode plugin stores its base address. The addresses

for the VirtualAlloc and VirtualFree Windows API functions can also be inferred based on the

arguments being passed to them.

The version of kernel32.dll being utilised within the victim environment can be identified by

matching the known offsets to the GetProcAddress, LoadLibraryA, VirtualAlloc and

VirtualFree Windows API functions. A YARA rule to perform this matching can be found in the

‘Appendix (YARA rule used to identify kernel32.dll)’ section.

A sample of kernel32.dll was identified using this YARA rule, which enabled addresses for the

following Windows API functions to be identified within the shellcode plugin:

• FindFirstFileW

• FindNextFileW

• FindClose

• GetLogicalDriveStringsA

• GetDriveTypeA

• GetDiskFreeSpaceExA

• DeleteFileW

• MoveFileW

• RemoveDirectoryW

The shellcode plugin initially enumerates all available disk drives on the host and lists the contents of
the directory from which the malware is executing. The shellcode plugin appears to enable the actors
to remotely browse the host filesystem and delete files and directories. The shellcode plugin doesn’t
appear to provide any capability to exfiltrate files and directories from the host. It is likely that this is
provided by a separate shellcode plugin.

The plugin uses the ‘helper’ functions from the malware to create a new socket connection to the C2
server, for receiving plugin-specific commands and sending responses back. The plugin-specific
commands and responses are RC4-encrypted using a randomly generated RC4 key (see the
‘Communications (Command and control)’ and ‘Communications (RC4 key generation)’ sections).
The address of a structure containing ‘helper’ function pointers is passed as an argument when the
malware executes the plugin.

2 https://www.mandiant.com/resources/precalculated-string-hashes-reverse-engineering-shellcode

Communications

Command and control

Busy Buzzard malware command and control (C2) communication is either sent over HTTPS with
RC4 encryption and Base64 encoding of tasking or sent directly over raw TCP with RC4 encryption of
tasking. Key generation is described further in the ‘Communications (RC4 key generation)’ section.

The C2 communication for both the TCP and HTTPS variants of the Busy Buzzard malware are
described in greater detail in the following sections.

HTTPS variant
The sequence of communications between the Busy Buzzard malware HTTPS variant and C2 server
is illustrated in Figure 2 and described below.

Figure 2: Communication between the Busy Buzzard malware HTTPS variant and C2 server

The Busy Buzzard malware HTTPS variant sends beacons to the C2 server at 30 second intervals.
The beacon data is formatted using HTTP POST URI parameters, as follows:

• b=<Hostname>|<Username>|<PID>&t=YY/MM/DD HH:MM:SS&r=<RC4 key>

• The b parameter is composed of the following values separated with the pipe character (‘|’):

- Hostname.
- Logged on username.
- PID of the process within whose context the malware is executing.

• The t parameter indicates the date/time at which the malware started operating, in the

format:
- YY/MM/DD HH:MM:SS

• The r parameter provides a randomly generated RC4 key (between 8 and 16 ASCII

characters in length) used to encrypt malware tasking and responses.

The beacon data is RSA encrypted using Windows Cryptography API functions and a hard-coded
RSA public key. After being encrypted the beacon data is Base64-encoded before being sent to the
C2 server via a POST request. The malware will continue to beacon until it receives a 200 OK

response from the C2 server, containing a Set-Cookie header field and 6 bytes of response data.

The first 4 bytes of the response data consist of a CRC32 checksum value for the remainder of the
response data after it has been decrypted using the previously shared RC4 key. The decrypted
response should consist of the string ok. The CRC32 checksum value associated with the string ok is

0x79dcdd47.

Once the correct response has been received from the C2 server, the malware will respond with an
empty POST request with the Cookie header field set to the value previously specified by the Set-

Cookie header field from the C2 server response. The malware expects to receive a 200 OK

response from the C2 server, with the response data containing tasking to be executed.

As before, the first 4 bytes of the response data consist of a CRC32 checksum value for the
remainder of the response data, after it has been decrypted using the previously shared RC4 key.
The first byte of the decrypted response specifies the command to be executed by the malware,
followed by additional command-specific parameters.

Once the requested command has been carried out and a response sent back to the C2 server, the
malware loops and begins the sequence of beaconing and receiving commands again. The RC4 key
used to encrypt tasking and responses is re-generated each time the malware loops, so each
sequence of beacon/tasking/response is encrypted differently.

The malware either uses a hard-coded User-Agent string for POST requests sent to the C2 server,

or the default system User-Agent string for the host. Where the User-Agent string was found to be

hard-coded, the value was:

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/4.0;

SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media

Center PC 6.0; .NET4.0C; .NET4.0E)

TCP variant
The sequence of communications between the Busy Buzzard malware TCP variant and C2 server is
illustrated in Figure 3 and described below.

Figure 3: Communication between the Busy Buzzard malware TCP variant and C2 server

The Busy Buzzard malware TCP variant sends beacons to the C2 server at 60 second intervals. The
beacon data is composed of a contiguous series of binary records, containing similar information to
the HTTPS variant. The binary records typically use type-length-value (TLV) encoding as shown in
Table 2. The full set of supported record types are described in Table 3. Record types 0x4 (Process

record) and 0x8 (IP address) do not use TLV encoding and are instead fixed-length records.

Record format

AA BB CC1 CC2 … CCN

data type data length data value

Table 2: TLV record format

Type field Data Length Data field

0x03 Variable defined by 1-byte
length field

Username string (UTF-16, maximum 32-bytes)

0x04 Fixed 15-byte length Process record (see Table 4)

0x05 Variable defined by 1-byte
length field

Timestamp string (ASCII, formatted as ‘YYYY/MM/DD

HH:MM:SS’)

0x06 Variable defined by 1-byte
length field

RC4 key string (ASCII, maximum 16-bytes)

0x07 Variable defined by 1-byte
length field

Hostname string (UTF-16, maximum 32-bytes)

0x08 Fixed 4-byte length IP address (formatted as 4 binary octets), populated
using the Windows API function getsockname

Table 3: Busy Buzzard beacon record types

Process record

04 AA AA AA AA BB 40 CC DD EE FF FF GG GG HH HH

process
ID

privilege
level

host
architecture

OS
major
version

OS minor
version

OS
build
number

system
type

OS
type

Table 4: Busy Buzzard beacon process record format

• privilege level is set to 0x1 if the malware is executing as LOCAL SYSTEM, 0x2 if the

malware is executing as ADMIN, or 0x3 otherwise.

• The remaining fields are populated with system data retrieved using the Windows API
functions GetNativeSystemInfo, RtlGetVersion and GetProductInfo.

The beacon data is RSA encrypted using Windows Cryptography API functions and a hard-coded
RSA public key. The earlier version of the TCP variant (compiled in July 2016) appends at least 5
bytes of random padding to the beacon data before it is sent to the C2 server.

Tasking from the C2 server is expected to be formatted as follows:

C2 tasking format

AA AA AA AA BB BB BB BB CC1 CC2 ... CCN

length of tasking
data

crc32 of decrypted tasking
data

encrypted tasking
data

Table 5: Busy Buzzard C2 tasking format

The earlier version (compiled in July 2016) of the TCP variant expects the length of tasking

data value to be RC4-encrypted using the previously shared RC4 key, however later versions do not

appear to encrypt this field. In all observed TCP variants, the tasking data is RC4-encrypted using the
previously shared RC4 key. The first byte of the decrypted tasking data specifies the command to be
executed by the malware, followed by additional command-specific parameters (see the ‘Functionality
(Overview)’ section).

The malware will continue to beacon until it receives tasking from the C2 server that specifies the
0x66 (‘f’) command followed by a non-zero 4-byte value. Once this command has been received the

malware will respond to further tasking from the C2 server and start to send ‘keep alive’ beacons to
the C2 server.

The ‘keep alive’ beacons are sent regularly at a default interval of 60 seconds. The command 0x6c

(‘l’) can be used to modify the ‘keep alive’ beacon interval. The ‘keep alive’ beacons contain

randomised data and are formatted as follows:

‘keep alive’ beacon format

AA AA AA AA FF BB1 BB2 ... BBN

length of beacon data random bytes

Table 6: Busy Buzzard ‘keep alive’ beacon format

The earlier version of the TCP variant RC4 encrypts length of beacon data using the previously

shared RC4 key.

RC4 key generation

The RC4 key used for C2 communications is randomly generated via the Windows API function
rand, seeded by a call to the Windows API function time. The RC4 key used for C2 communication

is:

• Randomly generated, between 8 and 16 characters in length, and only contains characters in
the printable ASCII range (see the ‘Appendix (Pseudocode for RC4 key generation)’ section).

• Sent to the C2 server underneath RSA encryption, using the Windows Cryptography API
functions and a hard-coded RSA public key.

Conclusion

Two variants of the Busy Buzzard malware have been identified, using different network protocols to
support C2 communications (TCP and HTTPS). Overlap between the compilation timestamps
associated with the two variants would appear to indicate that they have been used concurrently
(assuming that the timestamps are legitimate and have not been deliberately modified).

It is possible that the choice of whether to use either the TCP or HTTPS variant of the malware is
dependent upon the victim environment, for example protocols supported or known defences.

Two different versions of the TCP variant have been identified, one compiled in July 2016 and the
other compiled in June 2019. The versions are broadly similar in functionality with the main
differences being in the implementation of the C2 communications. This indicates that the Busy
Buzzard malware has been actively supported during this period.

A significant amount of attention has been given to ensuring that the C2 communications (TCP and
HTTPS) are difficult to detect and track. In particular the RC4 key, used to encrypt the C2
communications, is pre-shared in the initial beacon using RSA public key cryptography. This makes it
very difficult to intercept and decrypt the C2 communications without firstly being able to identify the
initial beacon, and then having access to the associated RSA private key.

The use of an in-memory shellcode loader to deploy the malware, multiple defence evasion
techniques, multiple communication protocols, the difficulty in detecting and tracking the C2
communications, and its modular nature lead to the NCSC conclusion that Busy Buzzard is a medium
sophistication piece of malware.

Recent open-source reporting by Trend Micro3 has identified a newer version of the TCP variant,
compiled in April 2021 and with added functionality. It has not been possible to analyse a sample of
this newer version, but this does indicate that the actors are continuing to develop the Busy Buzzard
malware.

Although the Busy Buzzard malware executes in-memory only, it is worth noting that the d command

uses the LoadLibraryW Windows API function to load a selected plugin DLL into memory. This

function loads a DLL file from disk, so any plugin DLLs would need to be present on the victim
filesystem and could potentially be identified during forensic analysis.

The hard-coded User-Agent string found in samples of the HTTPS variant is very similar to one that

has been uniquely attributed to the ChChes malware family by PwC4. The only difference between the
strings is that the Busy Buzzard malware refers to Trident/4.0 instead of Trident/6.0.

3 https://blog.trendmicro.co.jp/archives/29842

4 https://www.pwc.co.uk/cyber-security/pdf/cloud-hopper-annex-b-final.pdf

Detection

Indicators of compromise

Type Description Values

Domain
name

C2 server
domain

www.rare-coisns[.]com

IPv4
address

C2 server IP
address

206.189.46[.]22

IPv4
address

C2 server IP
address

88.198.101[.]58

URL C2 URL https[:]//www.rare-coisns[.]com/image/look/javascript/index.php

User
Agent

Busy Buzzard
User-Agent

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.1; WOW64; Trident/4.0; SLCC2;
.NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC
6.0; .NET4.0C; .NET4.0E)

Mutex
name

Busy Buzzard
mutex

0A463B5B\x015

Mutex
name

Busy Buzzard
mutex

51A50CE6\x015

5 Note that \x01 refers to the single byte value 01, which is a non-printable ASCII character

Rules and signatures

Description
Detects code bytes used by Busy Buzzard to switch between the different
commands, as well as a test for an "ok" response from the C2 server

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_command_switching_and_ok_response

{

 meta:

 author = "NCSC"

 description = "Detects code bytes used by Busy Buzzard to switch

between the different commands, as well as a test for an 'ok' response

from the C2 server"

 date = "2022-03-25"

 hash1 = "8fd99d9066020003358aa3e23c9af3d4911ce979"

 hash2 = "266852db4ad2d293469515820fd5e7c228cd4b3e"

 hash3 = "d2b8f4fe6eedb8b87521772fc823da596f2403b7"

 hash4 = "6a673508d46c0bbff74ee24384c8bc841c11ea4d"

 hash5 = "e74affd6c766156e3fe803917f28da08fe7000ef"

 hash6 = "48152eeb1d74a84ba86b34f419cf1c7a105e41ff"

 strings:

 // switch between 'd', 'f', 'l', 's' commands (TCP variant)

 $tcp = {3C 64 74 ?? 3C 66 74 ?? 3C 6C 74 ?? 3C 73 75 ?? 8D 57

FB 48 8D 4B 05 E8}

 // switch between 'd', 's' commands only (HTTPS variant)

 $http1 = {3C 64 74 ?? 3C 73}

 // test for 'ok' response from C2 server (HTTPS variant)

 $http2 = {80 3B 6F 75 ?? 80 7B 01 6B 74}

 condition:

 $tcp or (all of ($http*))

}

Description
Detects code bytes used by the TCP variant of Busy Buzzard to convert a
CRC32 value to its hex string representation in reverse-nibble order

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_convert_crc32_to_mutex_name

{

 meta:

 author = "NCSC"

 description = "Detects code bytes used by the TCP variant of Busy

Buzzard to convert a CRC32 value to its hex string representation in

reverse-nibble order"

 date = "2022-03-25"

 hash1 = "8fd99d9066020003358aa3e23c9af3d4911ce979"

 hash2 = "266852db4ad2d293469515820fd5e7c228cd4b3e"

 hash3 = "d2b8f4fe6eedb8b87521772fc823da596f2403b7"

 strings:

 // loop that converts a 4-byte value to its hex string

 // representation (in reverse)

 $ = {0F B6 C2 24 0F 3C 09 76 02 04 07 04 30 48 FF C1 C1 EA 04 49

FF C8 88 41 FF 75 E5}

 condition:

 all of them

}

Description Detects Busy Buzzard original DLL names embedded within the binary

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_original_dll_names

{

 meta:

 author = "NCSC"

 description = "Detects Busy Buzzard original DLL names embedded

within the binary"

 date = "2022-03-25"

 hash1 = "8fd99d9066020003358aa3e23c9af3d4911ce979"

 hash2 = "266852db4ad2d293469515820fd5e7c228cd4b3e"

 hash3 = "6a673508d46c0bbff74ee24384c8bc841c11ea4d"

 hash4 = "e74affd6c766156e3fe803917f28da08fe7000ef"

 hash5 = "48152eeb1d74a84ba86b34f419cf1c7a105e41ff"

 strings:

 $ = "httpsWin32.dll\x00"

 $ = "tcpcX64.dll\x00"

 condition:

 any of them

}

Description Detects code bytes used by Busy Buzzard to generate the randomised RC4 key

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_random_rc4_key_generator

{

 meta:

 author = "NCSC"

 description = "Detects code bytes used by Busy Buzzard to

generate the randomised RC4 key"

 date = "2022-03-25"

 hash1 = "8fd99d9066020003358aa3e23c9af3d4911ce979"

 hash2 = "266852db4ad2d293469515820fd5e7c228cd4b3e"

 hash3 = "d2b8f4fe6eedb8b87521772fc823da596f2403b7"

 hash4 = "6a673508d46c0bbff74ee24384c8bc841c11ea4d"

 hash5 = "e74affd6c766156e3fe803917f28da08fe7000ef"

 hash6 = "48152eeb1d74a84ba86b34f419cf1c7a105e41ff"

 strings:

 // x86

 $ = {99 B9 3E 00 00 00 F7 F9 83 FA 0A 73 05 83 C2 30 EB 0D 83 FA

25 73 05 83 C2 37 EB 03 83 C2 3C 8B 03 88 14 06 46 3B F7}

 // x64

 $ = {44 8B D8 B8 43 08 21 84 41 F7 EB 41 03 D3 C1 FA 05 8B CA C1

E9 1F 03 D1 6B D2 3E 44 2B DA 41 83 FB 0A 7D 06 41 83 C3 30 EB 10 41 83

FB 25 7D 06 41 83 C3 37 EB 04 41 83 C3 3C 48 8B 4D 00 48 FF C3 48 FF CE

44 88 5C 0B FF 75 B0}

 condition:

 any of them

}

Description
Detects command response strings, built on the stack, used by the HTTPS
variant of Busy Buzzard

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_https_cmd_response_stack_strings

{

 meta:

 author = "NCSC"

 description = "Detects command response strings, built on the

stack, used by the HTTPS variant of Busy Buzzard"

 date = "2022-03-25"

 hash1 = "6a673508d46c0bbff74ee24384c8bc841c11ea4d"

 hash2 = "e74affd6c766156e3fe803917f28da08fe7000ef"

 hash3 = "48152eeb1d74a84ba86b34f419cf1c7a105e41ff"

 strings:

 // "cmd="

 $ = {C7 (45 ?? | 85 ?? ?? ?? ??) 63 6D 64 3D}

 // "&type="

 $ = {C7 (45 ?? | 85 ?? ?? ?? ??) 26 74 79 70 66 C7 (45 ?? | 85 ??

?? ?? ??) 65 3D}

 // "&ret="

 $ = {C7 (45 ?? | 85 ?? ?? ?? ??) 26 72 65 74 66 C7 (45 ?? | 85 ??

?? ?? ??) 3D 00}

 condition:

 all of them

}

Description Detects code bytes used by Busy Buzzard shellcode plugin helper functions

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_plugin_helper_functions

{

 meta:

 author = "NCSC"

 description = "Detects code bytes used by Busy Buzzard shellcode

plugin helper functions"

 date = "2022-03-25"

 hash1 = "f737067d41bc77dc7dd09ecb6eb710619bc2dfde"

 hash2 = "cf6339501de54590f8bbbc3cfb8051b95f6a1a42"

 strings:

 $ = {56 48 8B F4 48 83 E4 F0 48 83 EC 20 E8 F7 DF FF FF 48 8B E6

5E C3 48 C7 C0 30 00 00 00 65 48 8B 00 48 8B 40 60 48 8B 40 18 48 8B 40

10 48 8B 00 48 8B 00 48 8B 40 30 C3}

 condition:

 (all of them) and (filesize < 20KB)

}

Description
Detects code bytes used for resolving function addresses in the Busy Buzzard
shellcode loader

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_shellcode_loader_x64

{

 meta:

 author = "NCSC"

 description = "Detects code bytes used for resolving function

addresses in the Busy Buzzard shellcode loader"

 date = "2022-03-25"

 hash1 = "8fd99d9066020003358aa3e23c9af3d4911ce979"

 hash2 = "266852db4ad2d293469515820fd5e7c228cd4b3e"

 strings:

 // resolving GetProcAddress

 $ = {3D 67 65 74 70}

 $ = {3D 64 64 72 65}

 // function name "IsBadReadPtr" built on stack

 $ = {C7 45 50 49 73 42 61}

 $ = {C7 45 54 64 52 65 61}

 $ = {C7 45 58 64 50 74 72}

 // function name "ImageRvaToVa" built on stack

 $ = {C7 45 20 49 6D 61 67}

 $ = {C7 45 24 65 52 76 61}

 $ = {C7 45 28 54 6F 56 61}

 // resolving kernel32 base address

 $ = {48 C7 C0 30 00 00 00 65 48 8B 00 48 8B 40 60 48 8B 40 18 48

8B 40 10 48 8B 00 48 8B 00 48 8B 40 30 C3}

 condition:

 all of them

}

Description
Detects hard-coded RSA public keys used by both the TCP and HTTPS
variants of Busy Buzzard

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_rsa_public_keys

{

 meta:

 author = "NCSC"

 description = "Detects hard-coded RSA public keys used by both

the TCP and HTTPS variants of Busy Buzzard"

 date = "2022-03-25"

 hash1 = "8fd99d9066020003358aa3e23c9af3d4911ce979"

 hash2 = "266852db4ad2d293469515820fd5e7c228cd4b3e"

 hash3 = "d2b8f4fe6eedb8b87521772fc823da596f2403b7"

 hash4 = "6a673508d46c0bbff74ee24384c8bc841c11ea4d"

 hash5 = "e74affd6c766156e3fe803917f28da08fe7000ef"

 hash6 = "48152eeb1d74a84ba86b34f419cf1c7a105e41ff"

 strings:

 // Hard-coded RSA public keys used by Busy Buzzard samples

 $rsa1 =

"MIGJAoGBANYrLIbgWsKfJOnWnk/YUJmgFxI5PMK31Rnj7AOR37VM66baxx/6+03/IbT4oe/P

y9YBYUIILhZTcCGOjv/KW+nZoQ4gdkDXexP7kD2YuwEKQZB1WSG3MTPNLCWANvGMrX+Cb/9H3

qJ/mmIYrygcLmzj4E2rSxJfdZ3YaYI1IX/vAgMBAAE=\x00"

 $rsa2 =

"MIGJAoGBAK7mh7RSMtisKLn+Jfkq9AUlOHqUe4zjTLVC89k+sPux5ZMr9ndtjzdx8bCcSfCQ

temKrR2LY4lRr5cZs3jgwaBbHS2SdCezUuNUdrEEsfWX8BlK13G8djFmmYZqKeQFnUrKZn+uA

0A4nIGPRFKB2fKfBjh4Y5qN2IoyV9Y0e8HHAgMBAAE=\x00"

 $rsa3 =

"MIGJAoGBALkXcETCNbKRUMlz0Bkl8Mr/Jm1A4VKxdLBlDXCtD/9fCrfSDl2z/JhykFJik787

pT05QuKIsLWZLv2/lqMlDxnKEPEQRDBdm900If27xShcK/qRoSOO8edUD44PphF5cMfK16VMo

N9e3DEVeP4zduCanP4vbFpH3vwaTI1Or1QRAgMBAAE=\x00"

 condition:

 (1 of ($rsa*))

}

Description
Detects additional random bytes used by TCP variants of Busy Buzzard to
generate a unique mutex name

Precision No false positives have been identified during VT retrohunt queries

Rule type YARA

rule BusyBuzzard_mutex_random_bytes

{

 meta:

 author = "NCSC"

 description = "Detects additional random bytes used by TCP

variants of Busy Buzzard to generate a unique mutex name"

 date = "2022-03-25"

 hash1 = "8fd99d9066020003358aa3e23c9af3d4911ce979"

 hash2 = "266852db4ad2d293469515820fd5e7c228cd4b3e"

 hash3 = "d2b8f4fe6eedb8b87521772fc823da596f2403b7"

 strings:

 // Additional random bytes used by TCP variants of Busy Buzzard

to generate a unique mutex name

 $rand1 = {61 87 67 6C 6A DB 4A C6 58 D1 61}

 $rand2 = {CF 4F 26 6A 57 77 5B B7 AB D4 29}

 condition:

 (1 of ($rand*))

}

Appendix

Pseudocode for RC4 key generation

Seed random number generator with output of time()

Generate a random key length as rand() & 0xf

If key_length < 8:

 key_length += 8
Loop over key_length:

 Generate next key byte as rand % 0x3e

 If next key byte < 0xa:

 next key byte += 0x30

 Else:

 If next key byte < 0x25:

 next key byte += 0x37

 Else:

 next key byte += 0x3c

YARA rule used to identify kernel32.dll

import "pe"

rule identify_kernel32_version

{

 condition:

 (uint16(0) == 0x5a4d) and pe.is_dll() and pe.is_64bit() and

 (pe.export_details[pe.exports_index("GetProcAddress")].offset ==

 pe.rva_to_offset(0x19d70)) and

 (pe.export_details[pe.exports_index("LoadLibraryA")].offset ==

 pe.rva_to_offset(0x1f560)) and

 (pe.export_details[pe.exports_index("VirtualAlloc")].offset ==

 pe.rva_to_offset(0x1b220)) and

 (pe.export_details[pe.exports_index("VirtualFree")].offset ==

 pe.rva_to_offset(0x1b970))

}

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings
and recommendations made have not been provided with the intention of avoiding all risks and
following the recommendations will not remove all such risk. Ownership of information risks
remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

