
3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 1/30

A method to assess 'forgivable' vs
'unforgivable' vulnerabilities
Research from the NCSC designed to eradicate vulnerability classes and make the
top-level mitigations easier to implement.

Executive Summary
All systems contain vulnerabilities. In fact, the number of Common Vulnerabilities
and Exposures (CVEs) in commodity technology continues to rise. While there are
a number of factors that are driving the increasing numbers, the NCSC expect
this trend to continue unless interventions are made.

We know many vulnerabilities are complex and hard to avoid. But vulnerabilities
that are trivial to find (and that occur time and time again) are ones the NCSC
are aiming to drive down at scale. These ‘unforgivable vulnerabilities', a phrase
coined by Steve Christie in his 2007 MITRE paper, ‘are beacons of a systematic
disregard for secure development practices. They simply should not appear in
software that has been designed, developed, and tested with security in mind’.

This paper extends the ideas in the MITRE paper and proposes a method to
assess a vulnerability as ‘forgivable’ or ‘unforgivable’. More importantly, this paper
intends to generate discussion with vendors, and is a call on them to work to
eradicate vulnerability classes and make the top-level mitigations discussed in
this paper easier to implement.

The NCSC’s analysis seeks to identify the root cause of vulnerabilities (opposed to
the details provided in the individual vulnerability advisory), using the CWE Top 25
Most Dangerous Software Releases for 2023. Having identified 11 top-level
mitigations required to manage these vulnerabilities, we assigned an ‘ease of
implementation' score to each top-level mitigation, based on:

direct and indirect costs

knowledge (that is, how widely known and understood is the mitigation)

technical feasibility

https://cwe.mitre.org/documents/unforgivable_vulns/unforgivable.pdf


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 2/30

Researchers can then assess an individual vulnerability, and use the ‘ease of
implementation’ scores (which we classify as ‘easy’, ‘medium’ or ‘hard’ to
implement) to assess how difficult it is to apply the mitigations. Vulnerabilities
with ‘easy’ mitigations are declared ‘unforgivable'.

Most of the 13 ‘unforgivable vulnerabilities’ mentioned in the original MITRE 2007
paper still exist in one form or another. At the core of our research is the desire to
eradicate vulnerability classes and make the top-level mitigations easier to
implement. The NCSC believe this can be best done by making operating
systems more secure, by improving development frameworks, and by
encouraging developers and vendors to adopt secure programming concepts.

Note:
This guide is written for software development and security professionals, and
assumes a familiarity with modern development techniques. The following
abbreviations are used throughout. 

CISA      Cybersecurity and Infrastructure Security Agency (US government agency)

CVE       Common Vulnerabilities and Exposures

CVSS     Common Vulnerability Scoring System

CWE     Common Weakness Enumeration

KEV       Known Exploited Vulnerabilities (CISA KEV List/Catalog)

KLOC    Thousand Lines of Code

NCSC    National Cyber Security Centre

NVD      National Vulnerabilities Database

OWASP  Open Web Application Security Project

SQL       Structured Query Language



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 3/30

Scope

The aim of this technical paper is to define a method that allows security
professionals to determine if a given software vulnerability is ‘forgivable’ or
‘unforgivable’ as defined below.

Show all

Forgivable vulnerabilities Show

Unforgivable vulnerabilities Show

Non-exploitable vulnerabilities Hide

There is a third class of vulnerability which we have called Non-exploitable.
We don’t discuss this class further in this paper, but arguably this is a
vulnerability that is not a security risk. This could be because:

there is no code path to be able to exploit it, or

there are mitigations in place to prevent the vulnerability being
exploited, or

it is unlikely that chaining vulnerabilities will allow exploitation

Background

Analysis by Eloff and Bella (2018), Williams et al. (2018) and Zheng et al. (2019)
suggests that no single control has had a significant effect on reducing the
number of software bugs. The average number of bugs in software has
remained constant over the last 20 years (McConnell, 2004; Coverity, 2014;
Coverity, 2019). Table 1 provides an overview of the statistics. Coverity (2019)



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 4/30

identified the average defect density for the software industry to be 1 defect per
thousand lines of code (KLOC). This highlights that whatever the software
product and whatever the programming language used, software defects will
always be present.

Table 1: Average number of software defects over time

Source Defects per KLOC

Jones (1986) 0.5

Microsoft Apps production (McConnel, 2004) 0.5

Coverity (2014) 0.76

Coverity (2019) 1

Hatton et al. (2017) found that software source code in systems doubles on
average every 3.5 years. This is largely due to:

user demand for additional functionality and sophistication

the increasing hardware processing power required to accommodate the
increase in demands

If the source code base doubles in size, the number of defects will increase
accordingly. Gaikovina Kula et al. (2010) argue that the increasing complexity of
source code has been observed to correlate with increasing the time to
remediate a software defect. Therefore, source code base size and the average
number of defects per KLOC should be taken into consideration when assessing
ease of implementation of mitigations.

Figure 1 illustrates the ‘System Programming Stack’, a generic representation of
how a modern operating system is designed. The example vulnerabilities
discussed in this paper affect different operating systems / platforms at different
levels of this generic stack.



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 5/30

Figure 1: System Programming Stack (image: iglu.net)

Research methodology

The research methodology used is as follows:

1. Analyse the ‘CWE Top 25 Most Dangerous Software Weaknesses 2023’ (shown
in table 2 below).

2. Identify the top-level mitigations required to manage the vulnerabilities. 

3. Assign each mitigation with a score that ranks its ‘ease of implementation’
(that is, how easy it is to implement the mitigation, based on cost, technical
feasibility and knowledge). 

4. To assess an individual vulnerability, identify the top-level mitigations
required to manage that vulnerability. 

5. Use the total implementation scores to quantify how easily the mitigations
could be applied.

6. Vulnerabilities with ‘easy’ mitigations  are declared ‘unforgivable'. 

https://iglu.net/


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 6/30

Note: The ease of implementation is predicated on the mitigation being implemented at the
beginning of the product’s development and not retrofitted. The cost and technical feasibility scores
will increase dramatically if the mitigation is retrofitted.

The source data for this paper comes from both the Common Weakness
Enumeration (CWE) Top 25 Most Dangerous Software Weaknesses of 2023 (MITRE,
2023), shown in table 2 below. This list was calculated by MITRE analysing public
vulnerability data in the U.S. National Vulnerability Database (NVD) for their root
causes via CWE mappings. Note that:

the list is based on 43,996 CVE records for vulnerabilities in 2021 and 2022

the mapping data was pulled from the NVD on March 27, 2023

the top-level mitigations are drawn from the detailed Common Weakness
Enumeration, and summarised for the purposes of this research paper

further analysis can be undertaken against the ‘2023 CWE Top 10 KEV
Weaknesses’ (which consists of CVE records that appear in the CISA Known
Exploited Vulnerabilities [KEV] Catalog, CISA 2023)

Table 2: CWE Top 25 Most Dangerous Software Weaknesses 2023

https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 7/30

Rank ID Name CVEs in
KEV

Top-Level Mitigation

1 CWE-787 Out-of-bounds Write 70
Language Selection

Libraries or
Frameworks

Input Validation

2 CWE-79 Improper Neutralization
of Input During Web Page
Generation ('Cross-site
Scripting')

4
Libraries or
Frameworks

3 CWE-89 Improper Neutralization
of Special Elements used
in an SQL Command ('SQL
Injection')

6
Libraries or
Frameworks

Output Encoding

Input Validation

4 CWE-416 Use After Free 44
Language Selection

5 CWE-78 Improper Neutralization
of Special Elements used
in an OS Command ('OS
Command Injection')

23
Sandbox or Jail

Reduce the Attack
Surface

Libraries or
Frameworks

Output Encoding

Input Validation

Enforcement by
Conversion

Compilation or Build
Hardening

https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/78.html


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 8/30

Secure Architecture
and Design 

6 CWE-20 Improper Input Validation 35
Reduce the Attack
Surface

Libraries or
Frameworks

Input Validation

7 CWE-125 Out-of-bounds Read 2
Input Validation

Language Selection

8 CWE-22 Improper Limitation of a
Pathname to a Restricted
Directory ('Path
Traversal')

16
Input Validation

Libraries or
Frameworks

Sandbox or Jail

9 CWE-352 Cross-Site Request
Forgery (CSRF)

0
 Libraries or
Frameworks

10 CWE-434 Unrestricted Upload of
File with Dangerous Type

5
Input Validation

Enforcement by
Conversion

11 CWE-862 Missing Authorization 0
Reduce the Attack
Surface

Libraries or
Frameworks

https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/22.html
https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/862.html


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 9/30

12 CWE-476 NULL Pointer Dereference 0
Input Validation

13 CWE-287 Improper Authentication 10
Libraries or
Frameworks

14 CWE-190 Integer Overflow or
Wraparound

4
Language Selection

Libraries or
Frameworks

Input Validation

15 CWE-502 Deserialization of
Untrusted Data

14
Input Validation

16 CWE-77 Improper Neutralization
of Special Elements used
in a Command
('Command Injection')

4
Libraries or
Frameworks

Input Validation

17 CWE-119 Improper Restriction of
Operations within the
Bounds of a Memory
Buffer

7
Libraries or
Frameworks

Input Validation

18 CWE-798 Use of Hard-coded
Credentials

2
Secure Architecture
and Design

19 CWE-918 Server-Side Request
Forgery (SSRF)

16
Language Selection

Input Validation

https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/502.html
https://cwe.mitre.org/data/definitions/77.html
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/798.html
https://cwe.mitre.org/data/definitions/918.html


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 10/30

20 CWE-306 Missing Authentication for
Critical Function

8
Secure Architecture
and Design

Libraries or
Frameworks

21 CWE-362 Concurrent Execution
using Shared Resource
with Improper
Synchronization ('Race
Condition')

8
Language Selection

22 CWE-269 Improper Privilege
Management

5
Separation of
Privilege

23 CWE-94 Improper Control of
Generation of Code
('Code Injection')

6
Secure Architecture
and Design

Input Validation

24 CWE-863 Incorrect Authorization 0
Secure Architecture
and Design

Libraries or
Frameworks

25 CWE-276 Incorrect Default
Permissions

0
Separation of
Privilege

Assessing ‘ease of implementation'

https://cwe.mitre.org/data/definitions/306.html
https://cwe.mitre.org/data/definitions/362.html
https://cwe.mitre.org/data/definitions/269.html
https://cwe.mitre.org/data/definitions/94.html
https://cwe.mitre.org/data/definitions/863.html
https://cwe.mitre.org/data/definitions/276.html


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 11/30

To assess the ‘ease of implementation’ of the top-level mitigations, several
methods were considered:

1.  Cost-effectiveness analysis: a form of economic analysis that compares
the relative costs and outcomes (effects) of different courses of action.
While typically used in the healthcare industry, it is increasingly used in other
domains (ICEAA, 2024).

2. Cost-benefit analysis: the systematic and analytical process of comparing
benefits and costs in evaluating the desirability of a project or programme. It
attempts to answer such questions as whether a proposed project is
worthwhile, the optimal scale of a proposed project and the relevant
constraints (Mishan and Quah, 2020).

3. Ease/impact matrix: the effort-to-impact matrix is a simple but valuable
tool that can help instructional coaches, teacher teams and administrators
to prioritise their efforts and make strategic choices about which steps to
take and when. It allows the user to map out potential strategies and identify
how much effort each will take versus how much impact it is likely to make
(Helmke, 2022).

Based on the understanding of the different assessment methods, a cost-
effectiveness analysis approach was chosen with the following factors taken into
consideration:

1. Cost: including direct costs (such as licensing a library) and indirect costs
(such as additional time needed to code/recode).

2. Knowledge: how widely-known and understood is the mitigation.

3. Technical Feasibility: a feasibility analysis evaluates the mitigation’s
potential for success, and how easy the mitigation is to achieve. This
includes evaluating the advantages and disadvantages of the mitigation,
and any technical requirements or prerequisites for the mitigation (such as
hardware support).

For each top-level mitigation, the cost, knowledge and technical feasibility is
assigned a score out of 3, based on the NCSC’s analysis of the literature review of
academic papers and industry white papers: 



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 12/30

1 indicates ‘easy/inexpensive’

3 indicates ‘hard/inexpensive’ 

2 indicates the intermediate

When the scores are added together, they provide an overall ‘Implication Score’
for each mitigation, which can be assigned a level of difficulty.

Table 3: Implementation Score 

Implementation Score Difficulty

3-4 Easy

5-6 Medium

7-9 Hard

For example, for the top-level mitigation Input Validation:

cost = 1

knowledge = 1

technical feasibility = 1

This gives a total of 3, which means the difficulty for this mitigation can be
declared Easy. 

The following table lists the implementation score for each top-level mitigation,
and the corresponding difficulty level. 

Table 4: Implementation Score for top-level mitigations



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 13/30

Top-level mitigation Implementation Score Difficulty

Input Validation 3 Easy

Output Encoding 3 Easy

Reduce the Attack Surface 5 Medium

Enforcement by Conversion 5 Medium

Sandbox or Jail 5 Medium

Secure Programming 6 Medium

Compilation or Build Hardening 6 Medium

Separation of Privilege 6 Medium

Libraries or Frameworks 6 Medium

Secure Architecture and Design 7 Hard

Language Selection 8 Hard

Analysis of top-level mitigations

This section explains how we arrived at the Implementation Score for each of the
top-level mitigations. They are presented in order of difficulty, starting with the
easiest mitigations first.

Input Validation

The OWASP Cheat Sheet (OWASP, 2021) provides the following examples for input
validation strategies:



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 14/30

 data type validators available natively in web application frameworks (such
as Django Validators and Apache Commons Validators)

validation against JSON Schema and XML Schema (XSD) for input in these
formats

type conversion (e.g. Integer.parseInt() in Java, int() in Python) with strict
exception handling

Input Validation is a subset of the Libraries or Frameworks mitigation. However, its
prevalence in the mitigation list means it’s worth listing separately.

Score Evidence

Cost 1 Low/no direct and indirect costs

Knowledge 1 Widely understood and widely available

Feasibility 1 Many implementations for most/all languages

Total 3 (Easy)

Output Encoding

Encoding and escaping are defensive techniques meant to stop injection
attacks. Encoding (commonly called ‘output encoding’) involves translating
special characters into some different but equivalent form that is no longer
dangerous in the target interpreter, for example translating the < character into
the < ; string when writing to an HTML page.

Escaping involves adding a special character before the character/string to
avoid it being misinterpreted, for example, adding a \ character before a
" (double quote) character so that it is interpreted as text and not as closing a
string.

Output Encoding is a subset of the Libraries or Frameworks mitigation. However,
its prevalence in the mitigation list means it’s worth listing separately.

https://docs.djangoproject.com/en/1.11/ref/validators/
https://commons.apache.org/proper/commons-validator/apidocs/org/apache/commons/validator/package-summary.html#doc.Usage.validator
http://json-schema.org/
https://www.w3schools.com/xml/schema_intro.asp


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 15/30

Score Evidence

Cost 1 Low/no direct and indirect costs

Knowledge 1 Widely understood and widely available

Feasibility 1 Many implementations for most/all languages

Total 3 (Easy)

Reduce the Attack Surface

Originating from the security sector, an ‘attack surface’ measure typically reflects
the number of input points and output points that can be exploited by a potential
attacker. A larger attack surface provides more places to attack, and more
opportunities for developers to introduce weaknesses. In some cases, this
measure may reflect other aspects of quality besides security. For example, a
product with many inputs and outputs may require a large number of tests in
order to improve code coverage. This can also include the use of functions,
libraries, and frameworks.

The attack surface of an application is the union of code, interfaces, services,
protocols, and practices available to all users, with a strong focus on what is
accessible to unauthenticated users (Microsoft, 2019). Therefore, developers
should look to reduce the exposure of the application at the earliest stages of
development, specifically at the design stage. Further considerations should be
given at the coding stage and finally at runtime.



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 16/30

Score Evidence

Cost 2 Removing code/functionality will take time and thus cost

Knowledge 1 Concept is widely known and understood

Feasibility 2 Technically feasible but challenges in justifying removal of
functionality/features

Total 5 (Medium)

Enforcement by Conversion

This mitigation involves converting the input into a different, well-controlled
representation. For example, in PHP, a common mechanism for avoiding SQL
injection is to apply intval() to all numeric inputs, which guarantees that the
generated value is a number. 

Score Evidence

Cost 1 Usually available as part of the language

Knowledge 3 Not widely used or understood

Feasibility 1 Does not rely upon any prerequisite

Total 5 (Medium)

Sandbox or Jail

Run the code in a ‘jail’ or similar sandbox environment that enforces strict
boundaries between the process and the operating system. This may effectively
restrict which files can be accessed in a particular directory, or which
commands can be executed by the software. 

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 17/30

in the Java SecurityManager allows the software to specify restrictions on file
operations. 

This may not be a feasible solution, and it only limits the impact to the operating
system; the rest of the application may still be subject to compromise. 

Score Evidence

Cost 1 Usually part of the language/OS

Knowledge 2 Concept is known and partially understood

Feasibility 2 Technically feasible but with limitations

Total 5 (Medium)

Secure Programming

This is a large subject and typically is down to the developers. Examples of secure
programming include:

when freeing pointers, be sure to set them to NULL once they are freed

if all pointers that could have been modified are sanity-checked previous to
use, nearly all NULL pointer dereferences can be prevented

ensure that all protocols are strictly defined such that all out-of-bounds
behaviour can be identified simply, and require strict conformance to the
protocol

when deserializing data, populate a new object rather than just deserializing

explicitly define a final object() to prevent deserialization

use library calls rather than external processes to recreate the desired
functionality



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 18/30

Score Evidence

Cost 2 Requires skilled developers

Knowledge 2 Concept is known and partially understood

Feasibility 2 Technically feasible with few technical prerequisites

Total 6 (Medium)

Compilation or Build Hardening

There are 4 areas to be examined when hardening the toolchain: configuration,
preprocessor, compiler, and linker. Developers and their development
environments are part of the software supply chain, so if their accounts get
compromised, attackers get control over parts of this chain. Nowadays, many
developers are working on these environments from their homes and can end up
as entry points for malicious code or let attackers steal credentials to production
services. Therefore, while ‘hardening’ used to mean securing a developer’s local
computer, it now also means bolstering the security of the tools they need to do
their work. These include source code management (SCM) tools, binary artifacts,
and build/CI/CD pipelines.

Build hardening includes using automatic buffer overflow detection
mechanisms. These are offered by certain compilers or compiler extensions, e.g.
Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag,
StackGuard, and ProPolice, which provide various mechanisms including canary-
based detection and range/index checking. D3-SFCV (Stack Frame Canary
Validation) from D3FEND (MITRE, 2023) discusses canary-based detection in
detail. Other examples include the Control-flow Enforcement Technology (CET)
Shadow Stack computer processor feature. It provides capabilities to defend
against return-oriented programming (ROP) based attacks. 



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 19/30

Score Evidence

Cost 1 Usually available as part of the tool chain

Knowledge 2 Not widely understood

Feasibility 3 Impact on performance and usually specific to compiler or
architecture

Total 6 (Medium)

Separation of Privilege

Separation of privilege, also called privilege separation, refers to both the
'segmentation of user privileges across various, separate users and accounts'
(Microsoft, 2021), and the compartmentalisation of privileges across various
application or system sub-components, tasks, and processes.        

A different, more generic description is that multiple conditions need to be met in
order to gain access to a given process or object. A control could be a
permission, for example. 

Score Evidence

Cost 2 Will take time and thus cost

Knowledge 2 Concept is widely known and understood

Feasibility 2 Technically feasible (see XP to Vista implementation) but requires
prerequisites

Total 6 (Medium)

Libraries or Frameworks

The difference between a library and a framework can be summarised as
follows:



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 20/30

for a library, your application code calls the library code

for a framework, your application code is called by the framework

The general advice is to use the latest version of a vetted library or framework to
fulfil the functionality that is required. This is largely to avoid duplication,
development time and in some cases to avoid creating your own
implementation of a complex function such as crypt. The main security
assumption is that the library or framework would not allow a weakness to occur,
or provides constructs that make weakness easier to avoid.

As with the choice of programming language, the choice of library or framework
also has several considerations, including:

size and complexity - ideally you would want to use as lightweight library /
framework as possible (to avoid bloatware etc).

performance requirements

use automated bundle tracking, e.g. to manage the latest version or to
check for large updates

impact to web accessibility

backward compatibility

licensing

documentation

correctly implemented

updates

security

support / community / vendor support - some libraries are backed by
vendors or communities who invest time and money into keeping libraries
up to date and secure

However, there are significant implications of migrating between frameworks. It is
typically non-trivial, time-consuming, can often be fraught with complex
technical challenges and can result in a lot of code to be re-written (LinkedIn,
2023; Opsview, 2023).



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 21/30

Score Evidence

Cost 2 Licensing costs

Knowledge 2 Current level of knowledge as highlighted by JetBrains (2022)

Feasibility 2 Performance and security impact

Total 6 (Medium)

Secure Architecture and Design

Ensuring the product is securely architected and designed should be done at the
beginning of the product development. Redesign of the product’s security
architecture and/or design, or to retrospectively add core security mitigations, is
expensive and difficult.

Examples include:

divide the product into anonymous, normal, privileged, and administrative
areas

refactor the product so that you do not have to dynamically generate code

Score Evidence

Cost 2 A critical, core process of software development

Knowledge 3 Not widely used or understood

Feasibility 2 Technically feasible with few technical prerequisites

Total 7 (Hard)

Language Selection



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 22/30

The choice of programming language will have a profound impact on the
security of the application. While modern languages, such as Rust and Swift, are
both type-safe and memory-safe, languages such as C, C++, and assembly do
not offer full type and memory safety for developers.

In theory an engineer has a choice of programming languages to develop in.
However, there are a number of constraints:

1. The ecosystem, what support is there, will it be around for a long time?

2. What is the environment / platform for the project (web, mobile, embedded
device, OS application, etc.)?

3. What are the specific requirements for libraries, features, and tools for the
programming language?

4. What is the performance consideration and is the languages suitable to
accommodate this performance?

5. Is the developer able to code in this language?

At the beginning of a new project, developers should choose a type-safe and
memory-safe programming language. The State of Developer Ecosystem 2022
survey (JetBrains, 2022) of 29,269 developers from around the world highlighted
that one out of every two developers is planning to adopt a new language. The
top choices for next languages are Go, Rust, Kotlin, TypeScript, and Python. This
highlights that the current level of knowledge is assessed at level 2.

However, there are a vast majority of even modern applications and operating
systems written in C and C++. As an example, Chrome announced that they will
soon support third-party Rust libraries (Google Security Blog, 2023). But Chrome
has millions of lines of C++ and it will take a long time to migrate. This would
mean the technical feasibility of retrospectively applying this mitigation is
assessed at level 3.



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 23/30

Score Evidence

Cost 3 Listed constraints would increase costs

Knowledge 2 Current level of knowledge as highlighted by JetBrains, 2022

Feasibility 3 Could be limited by requirements or time taken if retrospectively
applying this mitigation (Google Security Blog, 2023)

Total 8 (Hard)

Worked example: applying methodology to a recent
vulnerability

Below is an example of how the analysis can be used to determine if a
vulnerability is ‘unforgivable’.

CVE-202X-XXXXX Vendor Application Unauthenticated SQL Injection
Vulnerability

Vendor Advisory: http://www.example.com/security

CVSS v3.x Base: 9.8 Critical

Analysis: https://www.ncsc.gov.uk/sql-deep-dive-and-indicators-of-
compromise/

Analysis of the vulnerability by examining changes to the code in the updated
version identified three issues:



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 24/30

Analysis Relevant Mitigation Ease of implementation

Building the SQL query by
concatenating arguments
passed from user input has
been replaced with a safer SQL
library.

Libraries or Frameworks Medium

GetQueryVarsFromUser() function
removed.

Reduce the Attack Surface Medium

Variables are set to NULL before
they are used.

Input Validation Easy

While the exploitable
vulnerability was difficult to find,
one of the root causes was
deemed easy to implement,
and two were rated medium.

This vulnerability should not
have existed and is
unforgivable.

 

Conclusions

At the core of this paper is the need to eradicate vulnerability classes and make
the top-level mitigations easier to implement. This can be focussed on the
following three areas:

1 Operating Systems

Banning/remove unsafe functions. For example, there was a 41% of vulnerability
reduction with the move from XP to Vista from banning strcpy and associated
functions (Howard, 2007).

Handle security and reliability in common frameworks, APIs, and libraries. Only
exposing an interface that makes writing code with common classes of security



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 25/30

vulnerabilities impossible.

Make high impact mitigations much easier to implement via APIs (sandboxing,
privilege separation), or enforce the use of these.

2 Development Environments
The development environments, and specifically the Integrated Development
Environment (IDE), need to make the following easier for developers:

programming language documentation

understanding (and fixing) compiler warnings 

using secure programming languages in default new projects

migrating code from existing projects to secure programming languages

finding and integrating trusted third party frameworks and libraries

using built-in tools to highlight vulnerabilities in source code during development

eradicating vulnerability classes at the beginning of development

3 Developers (vendors)
Developers and vendors need to adopt secure programming concepts, and enforce
their use to make it harder for the mistakes to be made at source. Vulnerabilities must
be caught early in the development process. This includes the understanding of the
following topics:

methodology and process to catch vulnerabilities during development

basics of C programming and emphasising programming languages

memory layout/architecture and emphasising/adopting the use of technologies
such as Rust and CHERI

Further research

The method of assessing forgivable and unforgiveable vulnerabilities discussed
in this paper could be matured to take account of other factors, including:

the role of the product and the severity of the vulnerability (for example, if
the product is an internet-facing service and the vulnerability can be
exploited pre-authentication)

how to determine the vulnerability management maturity of the
vendor/developer (for example, is the vendor monitoring vulnerabilities
throughout the expected lifecycle of the product)



3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 26/30

is being unaware of a vulnerability (that is later exploited in the wild)
‘unforgivable’, and should other factors also be taken into consideration
(including know bug/vulnerability classes and their typical mitigations) 

References

Apple (2022) Blog - Towards the next generation of XNU memory safety:
kalloc_type - Apple Security Research. Available at: Blog - Towards the next
generation of XNU memory safety: kalloc_type - Apple Security Research
(Accessed: 20 November 2023).

Baires Dev (2022) How to Choose the Right Programming Language for a New
Project., BairesDev Available at: How to Choose the Right Programming Language
for a New Project | BairesDev (Accessed: 7 March 2024).

Christey, S. (2007) ‘Unforgivable Vulnerabilities’

CISA (2023a) 2022 Top Routinely Exploited Vulnerabilities | CISA. Available at: 2022
Top Routinely Exploited Vulnerabilities | CISA (Accessed: 28 September 2023).

CISA (2023b) Known Exploited Vulnerabilities Catalog | CISA. Available at: Known
Exploited Vulnerabilities Catalog | CISA (Accessed: 23 January 2024).

Coverity (2014) 2014 Coverity Scan Report. Available at:
https://news.blackduck.com/2015-07-29-Coverity-Scan-Open-Source-Report-
Shows-Commercial-Code-Is-More-Compliant-to-Security-Standards-than-
Open-Source-Code (Accessed: 17 June 2019).

Coverity (2019) Coverity. Available at: Coverity Scan - Static Analysis (Accessed: 17
June 2019).

Eloff, J. and Bella, M.B. (2018) ‘Software Failures: An Overview’, in Software Failure
Investigation. Cham: Springer International Publishing, pp. 7–24. Available at:
10.1007/978-3-319-61334-5_2 (Accessed: 13 June 2019).

https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety/
https://www.bairesdev.com/blog/choose-right-programming-language/
https://www.bairesdev.com/blog/choose-right-programming-language/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a
https://www.cisa.gov/news-events/cybersecurity-advisories/aa23-215a
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://news.blackduck.com/2015-07-29-Coverity-Scan-Open-Source-Report-Shows-Commercial-Code-Is-More-Compliant-to-Security-Standards-than-Open-Source-Code
https://news.blackduck.com/2015-07-29-Coverity-Scan-Open-Source-Report-Shows-Commercial-Code-Is-More-Compliant-to-Security-Standards-than-Open-Source-Code
https://news.blackduck.com/2015-07-29-Coverity-Scan-Open-Source-Report-Shows-Commercial-Code-Is-More-Compliant-to-Security-Standards-than-Open-Source-Code
https://scan.coverity.com/


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 27/30

Fulton, K.R., Chan, A., Votipka, D., Hicks, M. and Mazurek, M.L. (2021) ‘Benefits and
Drawbacks of Adopting a Secure Programming Language: Rust as a Case Study’, ,
pp. 597–616. Available at: Benefits and Drawbacks of Adopting a Secure
Programming Language: Rust as a Case Study | USENIX (Accessed: 28 September
2023).

Gaikovina Kula, R., Fushida, K., Kawaguchi, S. and Iida, H. (2010) ‘Analysis of Bug
Fixing Processes Using Program Slicing Metrics’, in Ali Babar, M., Vierimaa, M. and
Oivo, M. (eds.) Product-Focused Software Process Improvement. Berlin,
Heidelberg: Springer Berlin Heidelberg, pp. 32–46. Available at: 10.1007/978-3-642-
13792-1_5 (Accessed: 10 July 2019).

Google Security Blog (2023) Supporting the Use of Rust in the Chromium Project.
Google Online Security Blog. Available at: Supporting the Use of Rust in the
Chromium Project (Accessed: 28 September 2023).

Hanley, Z. (2023) MOVEit Transfer CVE-2023-34362 Deep Dive and Indicators of
Compromise., Autonomous Pentesting Platform Available at: MOVEit Transfer
CVE-2023-34362 Deep Dive and Indicators of Compromise (Accessed: 24
January 2024).

Helmke, S (2022) Where do you start when everything feels urgent? Use an effort-
to-impact matrix. Available at: WHERE DO YOU START WHEN EVERYTHING FEELS
URGENT? - ProQuest (Accessed: 22 March 2024).

Howard, M (2007) Howard.pdf. Available at:
https://www.acsac.org/2007/workshop/Howard.pdf (Accessed: 24 January 2024).

ICEAA (2024) International Cost Estimating and Analysis Association. Available at: 
International Cost Estimating and Analysis Association (Accessed: 22 March
2024).

Jaiswal, H (2023) CVE-2023-36934 Analysis: MOVEit Transfer SQL Injection., 
ProjectDiscovery - Vulnerability management | Blog Available at: CVE-2023-
36934 Analysis: MOVEit Transfer SQL Injection — ProjectDiscovery Blog (Accessed:
28 September 2023).

JetBrains (2022) The State of Developer Ecosystem in 2022 Infographic., JetBrains:
Developer Tools for Professionals and Teams Available at: The State of Developer

https://www.usenix.org/conference/soups2021/presentation/fulton
https://www.usenix.org/conference/soups2021/presentation/fulton
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
https://security.googleblog.com/2023/01/supporting-use-of-rust-in-chromium.html
http://horizon3.ai/
https://www.horizon3.ai/moveit-transfer-cve-2023-34362-deep-dive-and-indicators-of-compromise/
https://www.horizon3.ai/moveit-transfer-cve-2023-34362-deep-dive-and-indicators-of-compromise/
https://www.proquest.com/docview/2670469689?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals
https://www.proquest.com/docview/2670469689?pq-origsite=gscholar&fromopenview=true&sourcetype=Scholarly%20Journals
https://www.acsac.org/2007/workshop/Howard.pdf
https://www.iceaaonline.com/
http://projectdiscovery.io/
https://blog.projectdiscovery.io/moveit-transfer-sql-injection/
https://blog.projectdiscovery.io/moveit-transfer-sql-injection/
https://www.jetbrains.com/lp/devecosystem-2022


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 28/30

Ecosystem in 2022 Infographic (Accessed: 28 September 2023).

Kohlhase, M. (2023) Rust OS comparison. Available at: GitHub - flosse/rust-os-
comparison: A comparison of operating systems written in Rust (Accessed: 20
November 2023).

Lam, J., Fang, E., Almansoori, M., Chatterjee, R. and Soosai Raj, A.G. (2022) ‘Identifying
Gaps in the Secure Programming Knowledge and Skills of Students’, Proceedings
of the 53rd ACM Technical Symposium on Computer Science Education - Volume
1. New York, NY, USA: Association for Computing Machinery. SIGCSE 2022, Vol.1, pp.
703–709. Available at: 10.1145/3478431.3499391 (Accessed: 28 September 2023).

LEXFO (2023) Lexfo’s security blog - XORtigate: Pre-authentication Remote Code
Execution on Fortigate VPN (CVE-2023-27997). Available at: Lexfo's security blog -
XORtigate: Pre-authentication Remote Code Execution on Fortigate VPN (CVE-
2023-27997) (Accessed: 28 September 2023).

LinkedIn (2023) How can you switch web development frameworks?. Available at: 
How can you switch web development frameworks? (Accessed: 28 September
2023).

McConnell, S. (2004) Code complete.2nd ed. Redmond, Wash: Microsoft Press.

Microsoft (2019) Security Tips: Minimizing the Code You Expose to Untrusted Users.
Available at: Security Tips: Minimizing the Code You Expose to Untrusted Users
(Accessed: 22 March 2024).

Microsoft (2021) Security: Separation of Privilege., Microsoft Community Hub
Available at: https://techcommunity.microsoft.com/t5/azure-sql-blog/security-
separation-of-privilege/ba-p/2393637 (Accessed: 28 September 2023).

Mishan, E.J. and Quah, E. (2020) Cost-Benefit Analysis. 6th edn. Sixth edition. | Milton
Park, Abingdon, Oxon ; New York : Routledge, 2020.: Routledge. Available at:
10.4324/9781351029780 (Accessed: 22 March 2024).

MITRE (2023) CWE - 2023 CWE Top 25 Most Dangerous Software Weaknesses.
Available at: CWE - 2023 CWE Top 25 Most Dangerous Software Weaknesses
(Accessed: 23 January 2024).

https://www.jetbrains.com/lp/devecosystem-2022
https://github.com/flosse/rust-os-comparison
https://github.com/flosse/rust-os-comparison
https://blog.lexfo.fr/xortigate-cve-2023-27997.html
https://blog.lexfo.fr/xortigate-cve-2023-27997.html
https://blog.lexfo.fr/xortigate-cve-2023-27997.html
https://www.linkedin.com/advice/0/how-can-you-switch-web-development-frameworks
https://learn.microsoft.com/en-us/archive/msdn-magazine/2004/november/security-tips-minimizing-the-code-you-expose-to-untrusted-users
http://techcommunity.microsoft.com/
https://techcommunity.microsoft.com/t5/azure-sql-blog/security-separation-of-privilege/ba-p/2393637
https://techcommunity.microsoft.com/t5/azure-sql-blog/security-separation-of-privilege/ba-p/2393637
https://cwe.mitre.org/top25/archive/2023/2023_methodology.html


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 29/30

MITRE (2023) Stack Frame Canary Validation - Technique D3-SFCV | MITRE
D3FEND . Available at: Stack Frame Canary Validation - Technique D3-SFCV
(Accessed: 29 February 2024).

Morrison, P.J., Pandita, R., Xiao, X., Chillarege, R. and Williams, L. (2018) ‘Are
vulnerabilities discovered and resolved like other defects?’, Empirical Software
Engineering, 23(3), pp. 1383–1421. Available at: 10.1007/s10664-017-9541-1 (Accessed:
7 December 2018).

Opsview (2023) Migrating between JavaScript frameworks | Opsview. Available at:
Migrating between JavaScript frameworks | Opsview (Accessed: 28 September
2023).

Outsystems (n.d.) How to Reduce Attack Surface: Best Practices and Key Steps.
Available at: https://www.outsystems.com/blog/posts/attack-surface/ (Accessed:
7 March 2024).

OWASP (2021) Input Validation - OWASP Cheat Sheet Series. Available at: Input
Validation - OWASP Cheat Sheet Series (Accessed: 28 September 2023).

Simplilearn (2012) Feasibility Study and Its Importance in Project Management., 
Simplilearn | Online Courses - Bootcamp & Certification Platform Available at: 
How to Conduct a Feasibility Study: Key Steps & Examples (Accessed: 7 March
2024).

ZDI (last) (2021) Zero Day Initiative — CVE-2021-26084: Details on the Recently
Exploited Atlassian Confluence OGNL Injection Bug., Zero Day Initiative Available
at: Zero Day Initiative — CVE-2021-26084: Details on the Recently Exploited
Atlassian Confluence OGNL Injection Bug (Accessed: 23 January 2024).

Zheng, W., Feng, C., Yu, T., Yang, X. and Wu, X. (2019) ‘Towards understanding bugs in
an open source cloud management stack: An empirical study of OpenStack
software bugs’, Journal of Systems and Software, 151, pp. 210–223. Available at:
10.1016/j.jss.2019.02.025 (Accessed: 13 June 2019).

TM

PUBLISHED

28 January 2025

WRITTEN FOR

https://d3fend.mitre.org/technique/d3f:StackFrameCanaryValidation/
https://www.opsview.com/resources/engineering/blog/migrating-between-javascript-frameworks
https://www.outsystems.com/blog/posts/attack-surface/
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
http://simplilearn.com/
https://www.simplilearn.com/feasibility-study-article
https://www.thezdi.com/blog/2021/9/21/cve-2021-26084-details-on-the-recently-exploited-atlassian-confluence-ognl-injection-bug
https://www.thezdi.com/blog/2021/9/21/cve-2021-26084-details-on-the-recently-exploited-atlassian-confluence-ognl-injection-bug


3/10/25, 7:02 PM A method to assess 'forgivable' vs 'unforgivable'... - NCSC.GOV.UK

https://www.ncsc.gov.uk/report/a-method-to-assess-forgivable-vs-unforgivable-vulnerabilities 30/30

Cyber security professionals

https://www.ncsc.gov.uk/section/information-for/cyber-security-professionals

